Advertisement

The Clinical and Laboratory Features of Clonal Hematopoiesis of Indeterminate Potential

  • Jay L. Patel
    Correspondence
    Hematopathology, 500 Chipeta Way, MS115-G04, Salt Lake City, UT 84108.
    Affiliations
    Department of Pathology, University of Utah, 500 Chipeta Way, MS115-G04, Salt Lake City, UT 84108, USA

    Molecular Hematopathology, ARUP Laboratories, 500 Chipeta Way, MS115-G04, Salt Lake City, UT 84108, USA
    Search for articles by this author
Published:October 17, 2018DOI:https://doi.org/10.1016/j.yamp.2018.06.005
      Somatic mutations in genes commonly mutated in myeloid neoplasms (eg, DNMT3A, TET2, ASXL1) occur with increasing frequency as a function of age in normal individuals. This phenomenon has been described as clonal hematopoiesis of indeterminate potential (CHIP).

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Molecular Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Busque L.
        • Patel J.P.
        • Figueroa M.E.
        • et al.
        Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis.
        Nat Genet. 2012; 44: 1179-1181
        • Xie M.
        • Lu C.
        • Wang J.
        • et al.
        Age-related mutations associated with clonal hematopoietic expansion and malignancies.
        Nat Med. 2014; 20: 1472-1478
        • Haferlach T.
        • Nagata Y.
        • Grossmann V.
        • et al.
        Landscape of genetic lesions in 944 patients with myelodysplastic syndromes.
        Leukemia. 2014; 28: 241-247
        • Cancer Genome Atlas Research, Network
        • Ley T.J.
        • Miller C.
        • et al.
        Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia.
        N Engl J Med. 2013; 368: 2059-2074
        • Genovese G.
        • Kähler A.K.
        • Handsaker R.E.
        • et al.
        Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence.
        N Engl J Med. 2014; 371: 2477-2487
        • Jaiswal S.
        • Fontanillas P.
        • Flannick J.
        • et al.
        Age-related clonal hematopoiesis associated with adverse outcomes.
        N Engl J Med. 2014; 371: 2488-2498
        • Jaiswal S.
        • Natarajan P.
        • Silver A.J.
        • et al.
        Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease.
        N Engl J Med. 2017; 377: 111-121
        • Steensma D.P.
        • Bejar R.
        • Jaiswal S.
        • et al.
        Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes.
        Blood. 2015; 126: 9-16
        • Papaemmanuil E.
        • Gerstung M.
        • Bullinger L.
        • et al.
        Genomic classification and prognosis in acute myeloid leukemia.
        N Engl J Med. 2016; 374: 2209-2221
        • Papaemmanuil E.
        • Gerstung M.
        • Malcovati L.
        • et al.
        Clinical and biological implications of driver mutations in myelodysplastic syndromes.
        Blood. 2013; 122 ([quiz: 3699]): 3616-3627
        • Gelsi-Boyer V.
        • Brecqueville M.
        • Devillier R.
        • et al.
        Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases.
        J Hematol Oncol. 2012; 5: 12
        • Smith Z.D.
        • Meissner A.
        DNA methylation: roles in mammalian development.
        Nat Rev Genet. 2013; 14: 204-220
        • Valent P.
        • Orazi A.
        • Steensma D.P.
        • et al.
        Proposed minimal diagnostic criteria for myelodysplastic syndromes (MDS) and potential pre-MDS conditions.
        Oncotarget. 2017; 8: 73483-73500
        • Welch J.S.
        • Ley T.J.
        • Link D.C.
        • et al.
        The origin and evolution of mutations in acute myeloid leukemia.
        Cell. 2012; 150: 264-278
        • Cargo C.A.
        • Rowbotham N.
        • Evans P.
        • et al.
        Targeted sequencing identifies patients with preclinical MDS at high risk of disease progression.
        Blood. 2015; 126: 2362-2365
        • Font P.
        • Loscertales J.
        • Benavente C.
        • et al.
        Inter-observer variance with the diagnosis of myelodysplastic syndromes (MDS) following the 2008 WHO classification.
        Ann Hematol. 2013; 92: 19-24
        • Font P.
        • Loscertales J.
        • Soto C.
        • et al.
        Interobserver variance in myelodysplastic syndromes with less than 5 % bone marrow blasts: unilineage vs. multilineage dysplasia and reproducibility of the threshold of 2 % blasts.
        Ann Hematol. 2015; 94: 565-573
        • Steensma D.P.
        Dysplasia has A differential diagnosis: distinguishing genuine myelodysplastic syndromes (MDS) from mimics, imitators, copycats and impostors.
        Curr Hematol Malig Rep. 2012; 7: 310-320
        • Cazzola M.
        • Della Porta M.G.
        • Malcovati L.
        The genetic basis of myelodysplasia and its clinical relevance.
        Blood. 2013; 122: 4021-4034
        • Kwok B.
        • Hall J.M.
        • Witte J.S.
        • et al.
        MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance.
        Blood. 2015; 126: 2355-2361
        • Malcovati L.
        • Karimi M.
        • Papaemmanuil E.
        • et al.
        SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts.
        Blood. 2015; 126: 233-241
        • Malcovati L.
        • Gallì A.
        • Travaglino E.
        • et al.
        Clinical significance of somatic mutation in unexplained blood cytopenia.
        Blood. 2017; 129: 3371-3378
        • Bowman R.L.
        • Busque L.
        • Levine R.L.
        Clonal hematopoiesis and evolution to hematopoietic malignancies.
        Cell Stem Cell. 2018; 22: 157-170
        • Patel J.L.
        • Schumacher J.A.
        • Frizzell K.
        • et al.
        Coexisting and cooperating mutations in NPM1-mutated acute myeloid leukemia.
        Leuk Res. 2017; 56: 7-12
        • Ivey A.
        • Hills R.K.
        • Simpson M.A.
        • et al.
        Assessment of minimal residual disease in standard-risk AML.
        N Engl J Med. 2016; 374: 422-433
        • Jongen-Lavrencic M.
        • Grob T.
        • Hanekamp D.
        • et al.
        Molecular minimal residual disease in acute myeloid leukemia.
        N Engl J Med. 2018; 378: 1189-1199
        • Bejar R.
        • Stevenson K.
        • Abdel-Wahab O.
        • et al.
        Clinical effect of point mutations in myelodysplastic syndromes.
        N Engl J Med. 2011; 364: 2496-2506
        • Bejar R.
        Clinical and genetic predictors of prognosis in myelodysplastic syndromes.
        Haematologica. 2014; 99: 956-964
        • Arber D.A.
        • Orazi A.
        • Hasserjian R.
        • et al.
        The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.
        Blood. 2016; 127: 2391-2405
        • Greenberg P.L.
        • Tuechler H.
        • Schanz J.
        • et al.
        Revised international prognostic scoring system for myelodysplastic syndromes.
        Blood. 2012; 120: 2454-2465
        • Schanz J.
        • Tüchler H.
        • Solé F.
        • et al.
        New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge.
        J Clin Oncol. 2012; 30: 820-829