Advertisement
Review Article| Volume 3, P21-27, November 2020

Precision Therapies in Neurodevelopmental Disorders

Update on Gene Therapies
Published:September 09, 2020DOI:https://doi.org/10.1016/j.yamp.2020.07.017
      Neurodevelopmental disorders (NDD) refer to a collection of rare disorders that manifest during infancy, characterized by developmental delays across multiple domains, and often manifested with neuropsychiatric and neurologic disorders, including autism spectrum disorder, epilepsy, intellectual disability, movement disorder, and attention-deficit/hyperactivity disorder.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Molecular Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mitchell K.J.
        The genetics of neurodevelopmental disease.
        Curr Opin Neurobiol. 2011; 21: 197-203
        • Uddin M.
        • Pellecchia G.
        • Thiruvahindrapuram B.
        • et al.
        Indexing effects of copy number variation on genes involved in developmental delay.
        Sci Rep. 2016; 6: 28663
        • Bourke J.
        • de Klerk N.
        • Smith T.
        • et al.
        Population-based prevalence of intellectual disability and autism spectrum disorders in Western Australia: a comparison with previous estimates.
        Medicine (Baltimore). 2016; 95: e3737
        • Uddin M.
        • Wang Y.
        • Woodbury-Smith M.
        Artificial intelligence for precision medicine in neurodevelopmental disorders.
        NPJ Digit Med. 2019; 2: 112
        • Zack M.M.
        • Kobau R.
        National and state estimates of the numbers of adults and children with active epilepsy - United States, 2015.
        MMWR Morb Mortal Wkly Rep. 2017; 66: 821-825
        • American Psychiatric Association
        Diagnostic and statistical manual of mental disorders (DSM-5®).
        American Psychiatric Pub, 2013
        • Abbeduto L.
        • McDuffie A.
        • Thurman A.J.
        The fragile X syndrome-autism comorbidity: what do we really know?.
        Front Genet. 2014; 5: 355
        • Demark J.L.
        • Feldman M.A.
        • Holden J.J.
        Behavioral relationship between autism and fragile X syndrome.
        Am J Ment Retard. 2003; 108: 314-326
        • Lord C.
        • Rutter M.
        • Goode S.
        • et al.
        Autism diagnostic observation schedule: a standardized observation of communicative and social behavior.
        J Autism Dev Disord. 1989; 19: 185-212
        • Wassman E.R.
        • Ho K.S.
        • Bertrand D.
        • et al.
        Critical exon indexing improves clinical interpretation of copy number variants in neurodevelopmental disorders.
        Neurol Genet. 2019; 5: e378
        • Warrier R.P.
        • Azeemuddin S.
        Aeromonas hydrophilia tenosynovitis in an immunocompromised host.
        Indian J Pediatr. 1984; 51: 609-610
        • Tick B.
        • Bolton P.
        • Happe F.
        • et al.
        Heritability of autism spectrum disorders: a meta-analysis of twin studies.
        J Child Psychol Psychiatry. 2016; 57: 585-595
        • Berkovic S.F.
        • Howell R.A.
        • Hay D.A.
        • et al.
        Epilepsies in twins: genetics of the major epilepsy syndromes.
        Ann Neurol. 1998; 43: 435-445
        • Srivastava S.
        • Love-Nichols J.A.
        • Dies K.A.
        • et al.
        Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders.
        Genet Med. 2019; 21: 2413-2421
        • Coe B.P.
        • Stessman H.A.F.
        • Sulovari A.
        • et al.
        Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity.
        Nat Genet. 2019; 51: 106-116
        • Uddin M.
        • Tammimies K.
        • Pellecchia G.
        • et al.
        Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder.
        Nat Genet. 2014; 46: 742-747
        • Iossifov I.
        • O'Roak B.J.
        • Sanders S.J.
        • et al.
        The contribution of de novo coding mutations to autism spectrum disorder.
        Nature. 2014; 515: 216-221
        • Uddin M.
        • Sturge M.
        • Peddle L.
        • et al.
        Genome-wide signatures of 'rearrangement hotspots' within segmental duplications in humans.
        PLoS One. 2011; 6: e28853
        • Jiang Y.H.
        • Yuen R.K.
        • Jin X.
        • et al.
        Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing.
        Am J Hum Genet. 2013; 93: 249-263
        • Helbig K.L.
        • Farwell Hagman K.D.
        • Shinde D.N.
        • et al.
        Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy.
        Genet Med. 2016; 18: 898-905
        • Uddin M.
        • Woodbury-Smith M.
        • Chan A.
        • et al.
        Germline and somatic mutations in STXBP1 with diverse neurodevelopmental phenotypes.
        Neurol Genet. 2017; 3: e199
        • Chong W.W.
        • Lo I.F.
        • Lam S.T.
        • et al.
        Performance of chromosomal microarray for patients with intellectual disabilities/developmental delay, autism, and multiple congenital anomalies in a Chinese cohort.
        Mol Cytogenet. 2014; 7: 34
        • Chen X.
        • Li H.
        • Chen C.
        • et al.
        Genome-wide array analysis reveals novel genomic regions and candidate gene for intellectual disability.
        Mol Diagn Ther. 2018; 22: 749-757
        • Hanna E.
        • Remuzat C.
        • Auquier P.
        • et al.
        Gene therapies development: slow progress and promising prospect.
        J Mark Access Health Policy. 2017; 5: 1265293
        • Rubin G.M.
        • Spradling A.C.
        Genetic transformation of Drosophila with transposable element vectors.
        Science. 1982; 218: 348-353
        • Grimm D.
        • Lee J.S.
        • Wang L.
        • et al.
        In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses.
        J Virol. 2008; 82: 5887-5911
        • Bankiewicz K.S.
        • Eberling J.L.
        • Kohutnicka M.
        • et al.
        Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach.
        Exp Neurol. 2000; 164: 2-14
        • Ferreira V.
        • Petry H.
        • Salmon F.
        Immune responses to AAV-vectors, the glybera example from bench to bedside.
        Front Immunol. 2014; 5: 82
        • Foust K.D.
        • Nurre E.
        • Montgomery C.L.
        • et al.
        Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes.
        Nat Biotechnol. 2009; 27: 59-65
        • Akache B.
        • Grimm D.
        • Pandey K.
        • et al.
        The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9.
        J Virol. 2006; 80: 9831-9836
        • Al-Zaidy S.A.
        • Mendell J.R.
        From clinical trials to clinical practice: practical considerations for gene replacement therapy in SMA type 1.
        Pediatr Neurol. 2019; 100: 3-11
        • Rinaldi C.
        • Wood M.J.A.
        Antisense oligonucleotides: the next frontier for treatment of neurological disorders.
        Nat Rev Neurol. 2018; 14: 9-21
        • Shen X.
        • Corey D.R.
        Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs.
        Nucleic Acids Res. 2018; 46: 1584-1600
        • Marwick C.
        First "antisense" drug will treat CMV retinitis.
        JAMA. 1998; 280: 871
        • Kim J.
        • Hu C.
        • Moufawad El Achkar C.
        • et al.
        Patient-customized oligonucleotide therapy for a rare genetic disease.
        N Engl J Med. 2019; 381: 1644-1652
        • Jochmann E.
        • Steinbach R.
        • Jochmann T.
        • et al.
        Experiences from treating seven adult 5q spinal muscular atrophy patients with Nusinersen.
        Ther Adv Neurol Disord. 2020; 13 (1756286420907803)
        • Claborn M.K.
        • Stevens D.L.
        • Walker C.K.
        • et al.
        Nusinersen: a treatment for spinal muscular atrophy.
        Ann Pharmacother. 2019; 53: 61-69
        • Weeratna R.D.
        • Wu T.
        • Efler S.M.
        • et al.
        Designing gene therapy vectors: avoiding immune responses by using tissue-specific promoters.
        Gene Ther. 2001; 8: 1872-1878
        • Gao G.P.
        • Alvira M.R.
        • Wang L.
        • et al.
        Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy.
        Proc Natl Acad Sci U S A. 2002; 99: 11854-11859
        • Davidson B.L.
        • Stein C.S.
        • Heth J.A.
        • et al.
        Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system.
        Proc Natl Acad Sci U S A. 2000; 97: 3428-3432
        • Corey D.R.
        Synthetic nucleic acids and treatment of neurological diseases.
        JAMA Neurol. 2016; 73: 1238-1242
      1. Medicine, U. S. N. L. o. Clinical Trials.
        (2020. Available at:)
        • Wilbie D.
        • Walther J.
        • Mastrobattista E.
        Delivery aspects of CRISPR/Cas for in vivo genome editing.
        Acc Chem Res. 2019; 52: 1555-1564
        • Lima A.N.
        • Philot E.A.
        • Trossini G.H.
        • et al.
        Use of machine learning approaches for novel drug discovery.
        Expert Opin Drug Discov. 2016; 11: 225-239
        • Hessler G.
        • Baringhaus K.H.
        Artificial intelligence in drug design.
        Molecules. 2018; 23: 2520
        • Wainberg M.
        • Merico D.
        • Delong A.
        • et al.
        Deep learning in biomedicine.
        Nat Biotechnol. 2018; 36: 829-838