CONTENTS

Editorial Board, iii

Contributors, v

Preface: Molecular Pathology: The Laboratory-Developed Test, xv
By Gregory J. Tsongalis

The SARS-CoV-2 Pandemic

The 2020 Wild, Wild West of Diagnostics, 1
By Gregory J. Tsongalis and Karen Kaul

Disclosure, 3

Maintaining Laboratory Services in a Rural Academic Medical Center During the Severe Acute Respiratory Syndrome Coronavirus 2 Pandemic: What Worked and What Did Not (February 29–May 1, 2020), 5
By Wendy A. Wells, Michael T. Harhen, Michael S. Calderwood, Antonia L. Altomare, Jonathan T. Huntington, Edward J. Merrens, and Gregory J. Tsongalis

Introduction, 5
Preparations and timelines for the Dartmouth-Hitchcock response to the severe acute respiratory syndrome coronavirus 2 pandemic, 6
What worked, 8
What did not work, 10
Summary, 11
Disclosure, 11

Laboratory Testing of Severe Acute Respiratory Virus Coronavirus 2: A New York Institutional Experience, 13
By Marie C. Smithgall, Susan Whittier, and Helen Fernandes

Introduction, 13
Laboratory tests for detection of severe acute respiratory virus coronavirus 2, 14

Preanalytical Variables of Severe Acute Respiratory Virus Coronavirus 2 Diagnostics, 14
Rapid point-of-care molecular assays, 16
Serologic assays for coronavirus disease 19, 17
Considerations for Laboratory Testing During Unprecedented Times of Community Infections, 17
Disclosure, 18

Genetics

Precision Therapies in Neurodevelopmental Disorders: Update on Gene Therapies, 21
By Mohammed Uddin, Ahmad N. Abou Tayoun, Reem Kais Jan, Hosnarea Akter, Danielle M. Andrade, and Cyrus Boelman

Introduction, 21
Targeted gene therapy drugs in neurodevelopmental disorders, 22
Adeno-Associated Virus, 22
Antisense Oligonucleotide Therapy, 24
Risks and challenges of gene therapy, 24
Future of neurodevelopmental disorders genetic therapies, 25
Disclosure, 25

EpiSigns: DNA Methylation Signatures in Mendelian Neurodevelopmental Disorders as a Diagnostic Link Between a Genotype and Phenotype, 29
By Jack Reilly, Jennifer Kerkhof, and Bekim Sadikovic

Introduction, 29
Episignatures as diagnostic biomarkers in neurodevelopmental disorders, 31
Episignatures as phenotypic biomarkers in neurodevelopmental disorders, 35
Challenges in DNA methylation episignature analysis, 36
Disclosure, 37
Hematopathology

Molecular Pathways and Potential for Targeted Therapies in the Treatment of Early T-cell Precursor Acute Lymphoblastic Leukemia, 41
By Liam Donnelly, Juli-Anne Gardner, Joanna L. Conant, and Katherine A. Devitt
Introduction, 41
Significance, 42
Background, 42
T-cell Acute Lymphoblastic Leukemia Outcomes, 42
Early T-cell Precursor Acute Lymphoblastic Leukemia, 43
Molecular Pathways in Early T-cell Precursor Acute Lymphoblastic Leukemia: Polycomb Repressive Complex 2, 43
Molecular Pathways in Early T-cell Precursor Acute Lymphoblastic Leukemia: Janus Kinaseâ Signal Transducers and Activators of Transcription, 44
Molecular Pathways in Early T-cell Precursor Acute Lymphoblastic Leukemia: FLT3, 44
Molecular Pathways in Early T-cell Precursor Acute Lymphoblastic Leukemia: RAS, 45
Role of Multiagent Targeted Therapy, 46
Present relevance and future avenues to consider or to investigate, 47
Summary, 47
Disclosure, 47

Molecular Genomic Advances in Chronic Myelomonocytic Leukemia, 49
By Feras Ally and Michelle Afkhami
Introduction, 49
Morphologic findings in chronic myelomonocytic leukemia, 50
Cytogenetic abnormalities in chronic myelomonocytic leukemia, 50
Mutations in chronic myelomonocytic leukemia, 50
Approach to diagnosis and work-up, 52
Summary, 53
Disclosure, 53

Erdheim-Chester Disease: A Review of Molecular Genetic and Clinical Features, 57
By Ekrem Maloku and Eric Y. Loo
Introduction, 57
Summary of clinical-pathologic features, 57
The genomic landscape in Erdheim-Chester disease, 58
The mitogen-activated protein kinase/extracellular signal-regulated kinase pathway, 60
Mitogen-activated protein kinase, protein kinase B/mammalian target of rapamycin, and other pathway interactions, 60
Molecular diagnostics in the evaluation of Erdheim-Chester disease, 61
Erdheim-Chester disease molecular pathology as a guide for targeted therapy, 61
Molecular pathology and Erdheim-Chester disease/Langerhans cell histiocytosis disease ontogeny, 62
Summary, 63
Disclosure, 63

Utility of Fluorescence In Situ Hybridization in Clinical and Research Applications, 65
By Gail H. Vance and Wahab A. Khan
Introduction, 65
Significance, 65
Clinical use of fluorescence in situ hybridization and its major areas of advancement, 66
Digitizing and automating fluorescence in situ hybridization imaging, 66
Considerations for fluorescence in situ hybridization DNA probe validation, 67
Role of in situ hybridization assays in hematological malignancies with a chromosomal basis, 68
Fluorescence in situ hybridization probe design strategies to assess chromosomal correlates in acute myeloid leukemia, 68
Fluorescence in situ hybridization probe strategies for detecting myeloproliferative neoplasms, 69
Fluorescence in situ hybridization probe strategies detecting chromosomal correlates in mature B-cell neoplasms, 71
Role of single nucleotide polymorphism chromosomal microarrays in hematological malignancies, 71
Expanding traditional applications of fluorescence in situ hybridization, 72
Future considerations, 73
Summary, 73
Disclosure, 73

Germline Mutations with Predisposition to Myeloid Neoplasms, 77
By Yan Liu and Sheeba Pullarkat

Introduction, 77
Myeloid neoplasms with germline predisposition and preexisting platelet disorders, 78
Myeloid Neoplasms with Germline RUNX1 Mutation, 78
Myeloid Neoplasms with Germline ANKRD26 Mutation, 78
Myeloid Neoplasms with Germline ETV6 Mutation, 80
Myeloid neoplasms with germline predisposition without a preexisting disorder or organ dysfunction, 81
Acute Myeloid Leukemia with Germline CEBPA Mutation, 81
Myeloid Neoplasms with Germline DDX41 Mutation, 81
Myeloid neoplasms with germline predisposition and other organ dysfunction, 82
Myeloid Neoplasms with Germline GATA2 Mutation, 82
Myeloid Neoplasms Associated with Bone Marrow Failure Syndromes and Telomere Biology Disorders, 82
Rationale for universal genetic testing for germline predisposition to acute myeloid leukemias/myelodysplastic syndrome, 83
Significance of the knowledge of germline predisposition to myeloid neoplasms in diagnosis and management, 83
Disclosure, 83

Infectious Disease

Molecular Diagnosis of Drug Resistance in Mycobacterium tuberculosis: Perspectives from a Tuberculosis-Endemic Developing Country, 87
By Priti Kambli and Camilla Rodrigues

Introduction, 87
Significance, 88
Diagnosis implementation, 88
Molecular diagnosis, 88
GeneXpert MTB/RIF, 88
Xpert MTB/RIF, 88
Xpert MTB/RIF Ultra, 88
Xpert XDR-TB, 90
Disadvantages, 90
TrueNat TB Test, 90
Line probe assays, 90
Background, 90
Description of Methods, 90
Sensitivity and Specificity, 90
World Health Organization Recommendations, 91
Disadvantages, 91
Sequencing, 91
Pyrosequencing, 91
Next-Generation Sequencing, 91
Targeted Next-Generation Sequencing, 91
Whole Genome Sequencing for Mycobacteria, 92
Whole Genome Sequencing in Drug Resistance, 92
Direct DNA from Sputum and Whole Genome Sequencing, 92
Targeted Next-Generation Sequencing Versus Whole Genome Sequencing, 92
Future directions, 93
Summary, 93
Disclosure, 93

The Role of Human Immunodeficiency Virus Molecular Diagnostics in Ending the Epidemic, 97
By Justin Laracy and Jason Zucker

Molecular diagnostics to end the human immunodeficiency epidemic, 97
The role of molecular diagnostics in primary prevention, 98
CONTENTS

The Role of Molecular Diagnostics in Patients Adherent to Pre-exposure Prophylaxis, 98
The Role of Molecular Diagnostics in Pooled Sampling, 99
The role of molecular diagnostics in secondary prevention, 99
Treatment as Prevention, 99
CD4 Versus Viral Load Testing and Low-Income and Middle-Income Countries, 101
The Role of Molecular Diagnostics in Tracing Human Immunodeficiency Across Populations, 101
Disclosure, 103

Pharmacogenomics

Pharmacogenomics of Drug-Induced Liver Injury, 107
By Ann K. Daly

- Introduction, 107
- Historical perspective, 108
- HLA genotype as a risk factor for drug-induced liver injury, 108
- Non-HLA immunogenetic risk factors, 110
- Mechanism for immunogenetic associations in drug-induced liver injury, 111
- Drug disposition genotypes as risk factors, 112
- Present relevance and future avenues to consider or to investigate, 113
- Summary, 113
- Disclosure, 113

Bringing Pharmacogenetics to Prescribers: Progress and Challenges, 117
By David L. Thacker, Jessica Savieo, and Houda Hachad

- Introduction, 117
- Navigating an expanding evidentiary landscape, 118
- Collecting and Distilling Relevant Data Sets, 118
- Reconciliating Information from Multiple Sources, 118
- Recognizing Gaps of Knowledge and Limitations of Use, 119
- Continuous and effective use of pharmacogenetic test results relies on systems and experts, 120
- Tackling Heterogeneity in Testing Modalities, 120
- Adopting New Knowledge and Executing Updates, 120
- Infrastructure for delivering pharmacogenetic insight, 122
- Focusing on Pharmacogenetic Interventions Rather than Results, 122
- Achieving Dynamic Integration of Pharmacogenetics Insight into Clinical Workflow, 123
- Regulatory framework, 126
- Summary and future directions, 127
- Disclosure, 127

Precision Medicine Using Pharmacogenomic Panel-Testing: Current Status and Future Perspectives, 131
By Cathelijne H. van der Wouden, Henk-Jan Guchelaar, and Jesse J. Swen

- Introduction, 131
- The lack of evidence of (cost-) effectiveness supporting a pharmacogenomics-panel approach, 133
- Finding the optimal target population and timing for delivering pharmacogenomics, 134
- The lack of tools supporting implementation of pharmacogenomics-panel testing, 134
- Development of a Pharmacogenomics Panel to Facilitate Implementation, 134
- Enable Recording of Pharmacogenomics-Panel Results for Future Use, 136
- Future perspectives, 136
- Generating Evidence for Effectiveness of Precision Medicine Approaches, 136
- Determining Optimal Timing and Target Group for Pharmacogenomics-Panel Testing, 137
- Improving Predictive Utility of Genetic Variation to Predict Drug Response, 137
- Improving Ability to Adjust Pharmacotherapy to Optimize Outcomes, 138
- Recording Pharmacogenomics-Panel Results for Future Use, 138
Summary, 138
Disclosure, 138

Informatics

Artificial Intelligence in the Genetic Diagnosis of Rare Disease, 143
By Kiely N. James, Sujal Phadke, Terence C. Wong, and Shimul Chowdhury
Introduction, 143
Significance, 145
Artificial Intelligence in Phenotype Extraction, 145
Artificial Intelligence in Phenotype-Driven Variant Prioritization, 151
First-Generation Phenotype-Based Variant Prioritization Tools, 151
Second-Generation Phenotype-Based Variant Prioritization Tools, 152
Discussion/summary, 152
Limitations and Challenges, 152
Current Challenges and Barriers to Address, 153
One Laboratory’s Experience with Artificial Intelligence and Genetic Disease, 153
Final Thoughts, 154
Disclosure, 154

Building Infrastructure and Workflows for Clinical Bioinformatics Pipelines, 157
By Sabah Kadri
Introduction, 157
Significance, 158
Computational infrastructure for bioinformatics, 158
On-premise computing infrastructure, 158
Cloud-based service providers, 158
Data storage, 160
Data transfer, 161
Container technology, 161
Bioinformatics pipeline design and implementation frameworks, 161
Principles for robust pipeline implementation, 161
Native/basic pipeline frameworks, 161
Modern workflow management frameworks, 163
Domain specific language systems: Nextflow and Snakemake, 163
Commercial platforms: DNANexus and SevenBridges, 165
Tertiary analysis systems, 165
Interoperability and data integration with clinical informatics, 165
Discussion, 166
Disclosure, 166

Solid Tumors

Microsatellite Instability Testing and Therapy Implications, 169
By David B. Chapel and Lauren L. Ritterhouse
Introduction, 169
Clinical biology of DNA mismatch repair deficiency and microsatellite instability, 169
Testing for Mismatch Repair Deficiency and Microsatellite Instability, 170
Next-Generation Sequencing Based Microsatellite Instability Detection, 173
Novel Non-Next-Generation Sequencing Based Microsatellite Instability Calling Methods, 179
Using Next-Generation Sequencing to Understand the Pathogenetic Role of Microsatellite Instability in Cancer, 180
Present relevance and future avenues of investigation, 181
Lynch Syndrome, 181
Sporadic Microsatellite Instability, 181
Lynch Syndrome Screening, 182
Prognostic and Predictive Significance of Microsatellite Instability, 182
Future Directions, 183
Disclosure, 184

PIK3CA and Breast Cancer: New Insights and Therapeutic Strategies, 189
By Andrea Ferreira-Gonzalez
Introduction, 189
Phosphatidylinositol 3-kinases, 190
The Relevance of PIK3CA Mutations in Breast Cancer, 190
Summary, 197
Disclosure, 197
Identity/HLA

HLA Typing by Next-Generation Sequencing: Lessons Learned and Future Applications, 199
By Caleb Cornaby and Eric T. Weimer
 Introduction, 199
 HLA typing in the beginning, 200
 Molecular-based HLA typing era, 200
 Next-generation sequencing–based HLA typing, 201
 Future for clinical next-generation sequencing HLA typing, 202
 Disclosure, 203

HLA and Autoimmune Disease, 207
By Samuel Weinberg and Lawrence J. Jennings
 Introduction, 207
 The genetic component, 207
 The basic biology of human leukocyte antigen, 208
 Challenges with HLA–autoimmune disease association, 209
 Pathogenesis of celiac disease, 210
 Proposed mechanisms of pathogenesis, 211
 Generation and function of class I HLA, 213
 Generation and function of class II HLA, 214
 HLA polymorphism and immune tolerance, 215
 Environmental factors having an impact on HLA polymorphism, 216
 Summary, 216
 Disclosure, 216