Molecular Profile of BCR-ABL1 Negative Myeloproliferative Neoplasms and Its Impact on Prognosis and Management

  • Ayman Qasrawi
    Affiliations
    Assistant Professor, Division of Hematology, Blood and Marrow Transplantation & Cellular Therapy, University of Kentucky, Lexington, Kentucky 40536, USA

    University of Kentucky Markey Cancer Center, 800 Rose Street, Markey Cancer Center CC412, Lexington, KY 40536, USA
    Search for articles by this author
  • Ranjana Arora
    Correspondence
    Corresponding author. 800 Rose Street, MS 117 Wm R Willard Med Ed Bldg, Lexington, KY 40536.
    Affiliations
    Associate Professor, Department of Pathology and Laboratory Medicine, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA
    Search for articles by this author
Published:August 30, 2021DOI:https://doi.org/10.1016/j.yamp.2021.06.001
      Myeloproliferative neoplasms are mainly driven by the driver mutations JAK2, CALR, and MPL, which activate the JAK-STAT pathway.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Advances in Molecular Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Arber D.A.
        • Orazi A.
        • Hasserjian R.
        • et al.
        The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.
        Blood. 2016; 127: 2391-2405https://doi.org/10.1182/blood-2016-03-643544
        • Spivak J.L.
        How I treat polycythemia vera.
        Blood. 2019; 134: 341-352https://doi.org/10.1182/blood.2018834044
        • Tefferi A.
        • Pardanani A.
        Essential thrombocythemia.
        N Engl J Med. 2019; 381: 2135-2144https://doi.org/10.1056/NEJMcp1816082
        • Arachchillage D.R.
        • Laffan M.
        Pathogenesis and management of thrombotic disease in myeloproliferative neoplasms.
        Semin Thromb Hemost. 2019; 45: 604-611https://doi.org/10.1055/s-0039-1693477
        • Grinfeld J.
        • Nangalia J.
        • Baxter E.J.
        • et al.
        Classification and personalized prognosis in myeloproliferative neoplasms.
        N Engl J Med. 2018; 379: 1416-1430https://doi.org/10.1056/NEJMoa1716614
        • Zamora L.
        • Xicoy B.
        • Cabezon M.
        • et al.
        Co-existence of JAK2 V617F and CALR mutations in primary myelofibrosis.
        Leuk Lymphoma. 2015; 56: 2973-2974https://doi.org/10.3109/10428194.2015.1015124
        • Smith C.A.
        • Fan G.
        The saga of JAK2 mutations and translocations in hematologic disorders: pathogenesis, diagnostic and therapeutic prospects, and revised World Health Organization diagnostic criteria for myeloproliferative neoplasms.
        Hum Pathol. 2008; 39: 795-810https://doi.org/10.1016/j.humpath.2008.02.004
        • Tefferi A.
        JAK and MPL mutations in myeloid malignancies.
        Leuk Lymphoma. 2008; 49: 388-397https://doi.org/10.1080/10428190801895360
        • Pietra D.
        • Li S.
        • Brisci A.
        • et al.
        Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders.
        Blood. 2008; 111: 1686-1689https://doi.org/10.1182/blood-2007-07-101576
        • Scott L.M.
        • Tong W.
        • Levine R.L.
        • et al.
        JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis.
        N Engl J Med. 2007; 356: 459-468https://doi.org/10.1056/NEJMoa065202
        • Klampfl T.
        • Gisslinger H.
        • Harutyunyan A.S.
        • et al.
        Somatic mutations of calreticulin in myeloproliferative neoplasms.
        N Engl J Med. 2013; 369: 2379-2390https://doi.org/10.1056/NEJMoa1311347
        • Nangalia J.
        • Massie C.E.
        • Baxter E.J.
        • et al.
        Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2.
        N Engl J Med. 2013; 369: 2391-2405https://doi.org/10.1056/NEJMoa1312542
        • Beer P.A.
        • Campbell P.J.
        • Scott L.M.
        • et al.
        MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort.
        Blood. 2008; 112: 141-149https://doi.org/10.1182/blood-2008-01-131664
        • Pardanani A.D.
        • Levine R.L.
        • Lasho T.
        • et al.
        MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients.
        Blood. 2006; 108: 3472-3476https://doi.org/10.1182/blood-2006-04-018879
        • Milosevic Feenstra J.D.
        • Nivarthi H.
        • Gisslinger H.
        • et al.
        Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms.
        Blood. 2016; 127: 325-332https://doi.org/10.1182/blood-2015-07-661835
        • Tefferi A.
        • Lasho T.L.
        • Finke C.M.
        • et al.
        CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons.
        Leukemia. 2014; 28: 1472-1477https://doi.org/10.1038/leu.2014.3
        • Loscocco G.G.
        • Guglielmelli P.
        • Vannucchi A.M.
        Impact of mutational profile on the management of myeloproliferative neoplasms: a short review of the emerging data.
        Onco Targets Ther. 2020; 13: 12367-12382https://doi.org/10.2147/OTT.S287944
        • Wilks A.F.
        • Harpur A.G.
        • Kurban R.R.
        • et al.
        Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase.
        Mol Cell Biol. 1991; 11: 2057-2065https://doi.org/10.1128/mcb.11.4.2057
        • Vainchenker W.
        • Dusa A.
        • Constantinescu S.N.
        JAKs in pathology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies.
        Semin Cell Dev Biol. 2008; 19: 385-393https://doi.org/10.1016/j.semcdb.2008.07.002
        • Silvennoinen O.
        • Witthuhn B.A.
        • Quelle F.W.
        • et al.
        Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction.
        Proc Natl Acad Sci U S A. 1993; 90: 8429-8433https://doi.org/10.1073/pnas.90.18.8429
        • Ihle J.N.
        • Gilliland D.G.
        Jak2: normal function and role in hematopoietic disorders.
        Curr Opin Genet Dev. 2007; 17: 8-14https://doi.org/10.1016/j.gde.2006.12.009
        • Baxter E.J.
        • Scott L.M.
        • Campbell P.J.
        • et al.
        Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders.
        Lancet. 2005; 365: 1054-1061https://doi.org/10.1016/S0140-6736(05)71142-9
        • Kralovics R.
        • Passamonti F.
        • Buser A.S.
        • et al.
        A gain-of-function mutation of JAK2 in myeloproliferative disorders.
        N Engl J Med. 2005; 352: 1779-1790https://doi.org/10.1056/NEJMoa051113
        • Kralovics R.
        • Guan Y.
        • Prchal J.T.
        Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera.
        Exp Hematol. 2002; 30: 229-236https://doi.org/10.1016/s0301-472x(01)00789-5
        • Kralovics R.
        • Buser A.S.
        • Teo S.S.
        • et al.
        Comparison of molecular markers in a cohort of patients with chronic myeloproliferative disorders.
        Blood. 2003; 102: 1869-1871https://doi.org/10.1182/blood-2003-03-0744
        • Tiedt R.
        • Hao-Shen H.
        • Sobas M.A.
        • et al.
        Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice.
        Blood. 2008; 111: 3931-3940https://doi.org/10.1182/blood-2007-08-107748
        • Schnittger S.
        • Bacher U.
        • Kern W.
        • et al.
        Report on two novel nucleotide exchanges in the JAK2 pseudokinase domain: D620E and E627E.
        Leukemia. 2006; 20: 2195-2197https://doi.org/10.1038/sj.leu.2404325
        • Cleyrat C.
        • Jelinek J.
        • Girodon F.
        • et al.
        JAK2 mutation and disease phenotype: a double L611V/V617F in cis mutation of JAK2 is associated with isolated erythrocytosis and increased activation of AKT and ERK1/2 rather than STAT5.
        Leukemia. 2010; 24: 1069-1073https://doi.org/10.1038/leu.2010.23
        • Passamonti F.
        • Elena C.
        • Schnittger S.
        • et al.
        Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations.
        Blood. 2011; 117: 2813-2816https://doi.org/10.1182/blood-2010-11-316810
        • Pietra D.
        • Rumi E.
        • Ferretti V.V.
        • et al.
        Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms.
        Leukemia. 2016; 30: 431-438https://doi.org/10.1038/leu.2015.277
        • Merlinsky T.R.
        • Levine R.L.
        • Pronier E.
        Unfolding the role of calreticulin in myeloproliferative neoplasm pathogenesis.
        Clin Cancer Res. 2019; 25: 2956-2962https://doi.org/10.1158/1078-0432.CCR-18-3777
        • Lim K.H.
        • Chang Y.C.
        • Chiang Y.H.
        • et al.
        Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish.
        Blood Cancer J. 2016; 6: e481https://doi.org/10.1038/bcj.2016.83
        • Shide K.
        • Kameda T.
        • Yamaji T.
        • et al.
        Calreticulin mutant mice develop essential thrombocythemia that is ameliorated by the JAK inhibitor ruxolitinib.
        Leukemia. 2017; 31: 1136-1144https://doi.org/10.1038/leu.2016.308
        • Araki M.
        • Komatsu N.
        The role of calreticulin mutations in myeloproliferative neoplasms.
        Int J Hematol. 2020; 111: 200-205https://doi.org/10.1007/s12185-019-02800-0
        • Araki M.
        • Yang Y.
        • Imai M.
        • et al.
        Homomultimerization of mutant calreticulin is a prerequisite for MPL binding and activation.
        Leukemia. 2019; 33: 122-131https://doi.org/10.1038/s41375-018-0181-2
        • Drachman J.G.
        • Griffin J.D.
        • Kaushansky K.
        The c-Mpl ligand (thrombopoietin) stimulates tyrosine phosphorylation of Jak2, Shc, and c-Mpl.
        J Biol Chem. 1995; 270: 4979-4982https://doi.org/10.1074/jbc.270.10.4979
        • Hitchcock I.S.
        • Kaushansky K.
        Thrombopoietin from beginning to end.
        Br J Haematol. 2014; 165: 259-268https://doi.org/10.1111/bjh.12772
        • Tefferi A.
        Primary myelofibrosis: 2019 update on diagnosis, risk-stratification and management.
        Am J Hematol. 2018; 93: 1551-1560https://doi.org/10.1002/ajh.25230
        • Vainchenker W.
        • Plo I.
        • Marty C.
        • et al.
        The role of the thrombopoietin receptor MPL in myeloproliferative neoplasms: recent findings and potential therapeutic applications.
        Expert Rev Hematol. 2019; 12: 437-448https://doi.org/10.1080/17474086.2019.1617129
        • Jaiswal S.
        • Fontanillas P.
        • Flannick J.
        • et al.
        Age-related clonal hematopoiesis associated with adverse outcomes.
        N Engl J Med. 2014; 371: 2488-2498https://doi.org/10.1056/NEJMoa1408617
        • Ley T.J.
        • Ding L.
        • Walter M.J.
        • et al.
        DNMT3A mutations in acute myeloid leukemia.
        N Engl J Med. 2010; 363: 2424-2433https://doi.org/10.1056/NEJMoa1005143
        • Walter M.J.
        • Ding L.
        • Shen D.
        • et al.
        Recurrent DNMT3A mutations in patients with myelodysplastic syndromes.
        Leukemia. 2011; 25: 1153-1158https://doi.org/10.1038/leu.2011.44
        • Stegelmann F.
        • Bullinger L.
        • Schlenk R.F.
        • et al.
        DNMT3A mutations in myeloproliferative neoplasms.
        Leukemia. 2011; 25: 1217-1219https://doi.org/10.1038/leu.2011.77
        • Nangalia J.
        • Nice F.L.
        • Wedge D.C.
        • et al.
        DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype.
        Haematologica. 2015; 100: e438-e442https://doi.org/10.3324/haematol.2015.129510
        • Senín A.
        • Fernández-Rodríguez C.
        • Bellosillo B.
        • et al.
        Non-driver mutations in patients with JAK2V617F-mutated polycythemia vera or essential thrombocythemia with long-term molecular follow-up.
        Ann Hematol. 2018; 97: 443-451https://doi.org/10.1007/s00277-017-3193-5
        • Tamari R.
        • Rapaport F.
        • Zhang N.
        • et al.
        Impact of high-molecular-risk mutations on transplantation outcomes in patients with myelofibrosis.
        Biol Blood Marrow Transplant. 2019; 25: 1142-1151https://doi.org/10.1016/j.bbmt.2019.01.002
        • Bartels S.
        • Vogtmann J.
        • Schipper E.
        • et al.
        Combination of myeloproliferative neoplasm driver gene activation with mutations of splice factor or epigenetic modifier genes increases risk of rapid blastic progression.
        Eur J Haematol. 2021; https://doi.org/10.1111/ejh.13579
        • Tefferi A.
        Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1.
        Leukemia. 2010; 24: 1128-1138https://doi.org/10.1038/leu.2010.69
        • Tefferi A.
        • Pardanani A.
        • Lim K.H.
        • et al.
        TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis.
        Leukemia. 2009; 23: 905-911https://doi.org/10.1038/leu.2009.47
        • Ortmann C.A.
        • Kent D.G.
        • Nangalia J.
        • et al.
        Effect of mutation order on myeloproliferative neoplasms.
        N Engl J Med. 2015; 372: 601-612https://doi.org/10.1056/NEJMoa1412098
        • Haladyna J.N.
        • Yamauchi T.
        • Neff T.
        • et al.
        Epigenetic modifiers in normal and malignant hematopoiesis.
        Epigenomics. 2015; 7: 301-320https://doi.org/10.2217/epi.14.88
        • Losman J.A.
        • Looper R.E.
        • Koivunen P.
        • et al.
        (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible.
        Science. 2013; 339: 1621-1625https://doi.org/10.1126/science.1231677
        • Tefferi A.
        • Lasho T.L.
        • Abdel-Wahab O.
        • et al.
        IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis.
        Leukemia. 2010; 24: 1302-1309https://doi.org/10.1038/leu.2010.113
        • Vannucchi A.M.
        • Lasho T.L.
        • Guglielmelli P.
        • et al.
        Mutations and prognosis in primary myelofibrosis.
        Leukemia. 2013; 27: 1861-1869https://doi.org/10.1038/leu.2013.119
        • McKenney A.S.
        • Lau A.N.
        • Somasundara A.V.H.
        • et al.
        JAK2/IDH-mutant-driven myeloproliferative neoplasm is sensitive to combined targeted inhibition.
        J Clin Invest. 2018; 128: 789-804https://doi.org/10.1172/JCI94516
        • Kröger N.
        • Panagiota V.
        • Badbaran A.
        • et al.
        Impact of molecular genetics on outcome in myelofibrosis patients after allogeneic stem cell transplantation.
        Biol Blood Marrow Transplant. 2017; 23: 1095-1101https://doi.org/10.1016/j.bbmt.2017.03.034
        • Gelsi-Boyer V.
        • Brecqueville M.
        • Devillier R.
        • et al.
        Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases.
        J Hematol Oncol. 2012; 5: 12https://doi.org/10.1186/1756-8722-5-12
        • Abdel-Wahab O.
        • Adli M.
        • LaFave L.M.
        • et al.
        ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression.
        Cancer Cell. 2012; 22: 180-193https://doi.org/10.1016/j.ccr.2012.06.032
        • Carbuccia N.
        • Murati A.
        • Trouplin V.
        • et al.
        Mutations of ASXL1 gene in myeloproliferative neoplasms.
        Leukemia. 2009; 23: 2183-2186https://doi.org/10.1038/leu.2009.141
        • Abdel-Wahab O.
        • Pardanani A.
        • Patel J.
        • et al.
        Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms.
        Leukemia. 2011; 25: 1200-1202https://doi.org/10.1038/leu.2011.58
        • Ernst T.
        • Chase A.J.
        • Score J.
        • et al.
        Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders.
        Nat Genet. 2010; 42: 722-726https://doi.org/10.1038/ng.621
        • Wang Z.
        • Liu W.
        • Wang M.
        • et al.
        Prognostic value of ASXL1 mutations in patients with primary myelofibrosis and its relationship with clinical features: a meta-analysis.
        Ann Hematol. 2021; 100: 465-479https://doi.org/10.1007/s00277-020-04387-7
        • Will C.L.
        • Lührmann R.
        Spliceosome structure and function.
        Cold Spring Harb Perspect Biol. 2011; 3https://doi.org/10.1101/cshperspect.a003707
        • Tefferi A.
        • Finke C.M.
        • Lasho T.L.
        • et al.
        U2AF1 mutation types in primary myelofibrosis: phenotypic and prognostic distinctions.
        Leukemia. 2018; 32: 2274-2278https://doi.org/10.1038/s41375-018-0078-0
        • Dolatshad H.
        • Pellagatti A.
        • Fernandez-Mercado M.
        • et al.
        Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells.
        Leukemia. 2015; 29: 1092-1103https://doi.org/10.1038/leu.2014.331
        • De La Garza A.
        • Cameron R.C.
        • Gupta V.
        • et al.
        The splicing factor Sf3b1 regulates erythroid maturation and proliferation via TGFβ signaling in zebrafish.
        Blood Adv. 2019; 3: 2093-2104https://doi.org/10.1182/bloodadvances.2018027714
        • Zhao L.-P.
        • De Oliveira R.D.
        • Marcault C.
        • et al.
        SF3B1 mutations in the driver clone increase the risk of evolution to myelofibrosis in patients with myeloproliferative neoplasms (MPN).
        Blood. 2020; 136https://doi.org/10.1182/blood-2020-141296
        • Tefferi A.
        • Lasho T.L.
        • Guglielmelli P.
        • et al.
        Targeted deep sequencing in polycythemia vera and essential thrombocythemia.
        Blood Adv. 2016; 1: 21-30https://doi.org/10.1182/bloodadvances.2016000216
        • Aujla A.
        • Linder K.
        • Iragavarapu C.
        • et al.
        SRSF2 mutations in myelodysplasia/myeloproliferative neoplasms.
        Biomark Res. 2018; 6: 29https://doi.org/10.1186/s40364-018-0142-y
        • Arbab Jafari P.
        • Ayatollahi H.
        • Sadeghi R.
        • et al.
        Prognostic significance of SRSF2 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysis.
        Hematology. 2018; 23: 778-784https://doi.org/10.1080/10245332.2018.1471794
        • Song J.
        • Hussaini M.
        • Zhang H.
        • et al.
        Comparison of the mutational profiles of primary myelofibrosis, polycythemia vera, and essential thrombocytosis.
        Am J Clin Pathol. 2017; 147: 444-452https://doi.org/10.1093/ajcp/aqw222
        • Tefferi A.
        • Lasho T.L.
        • Finke C.M.
        • et al.
        Targeted deep sequencing in primary myelofibrosis.
        Blood Adv. 2016; 1: 105-111https://doi.org/10.1182/bloodadvances.2016000208
        • Lasho T.L.
        • Jimma T.
        • Finke C.M.
        • et al.
        SRSF2 mutations in primary myelofibrosis: significant clustering with IDH mutations and independent association with inferior overall and leukemia-free survival.
        Blood. 2012; 120: 4168-4171https://doi.org/10.1182/blood-2012-05-429696
        • Zhang S.J.
        • Rampal R.
        • Manshouri T.
        • et al.
        Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome.
        Blood. 2012; 119: 4480-4485https://doi.org/10.1182/blood-2011-11-390252
        • Dutta A.
        • Yang Y.
        • Le B.T.
        • et al.
        U2af1 is required for survival and function of hematopoietic stem/progenitor cells.
        Leukemia. 2021; https://doi.org/10.1038/s41375-020-01116-x
        • Barraco D.
        • Elala Y.C.
        • Lasho T.L.
        • et al.
        Molecular correlates of anemia in primary myelofibrosis: a significant and independent association with U2AF1 mutations.
        Blood Cancer J. 2016; 6: e416https://doi.org/10.1038/bcj.2016.24
        • Tefferi A.
        • Finke C.M.
        • Lasho T.L.
        • et al.
        U2AF1 mutations in primary myelofibrosis are strongly associated with anemia and thrombocytopenia despite clustering with JAK2V617F and normal karyotype.
        Leukemia. 2014; 28: 431-433https://doi.org/10.1038/leu.2013.286
        • Sanada M.
        • Suzuki T.
        • Shih L.Y.
        • et al.
        Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms.
        Nature. 2009; 460: 904-908https://doi.org/10.1038/nature08240
        • Lasho T.L.
        • Mudireddy M.
        • Finke C.M.
        • et al.
        Targeted next-generation sequencing in blast phase myeloproliferative neoplasms.
        Blood Adv. 2018; 2: 370-380https://doi.org/10.1182/bloodadvances.2018015875
        • Coltro G.
        • Rotunno G.
        • Mannelli L.
        • et al.
        RAS/CBL mutations predict resistance to JAK inhibitors in myelofibrosis and are associated with poor prognostic features.
        Blood Adv. 2020; 4: 3677-3687https://doi.org/10.1182/bloodadvances.2020002175
        • Shapiro P.
        Ras-MAP kinase signaling pathways and control of cell proliferation: relevance to cancer therapy.
        Crit Rev Clin Lab Sci. 2002; 39: 285-330https://doi.org/10.1080/10408360290795538
        • Santos F.P.S.
        • Getta B.
        • Masarova L.
        • et al.
        Prognostic impact of RAS-pathway mutations in patients with myelofibrosis.
        Leukemia. 2020; 34: 799-810https://doi.org/10.1038/s41375-019-0603-9
        • Tenedini E.
        • Bernardis I.
        • Artusi V.
        • et al.
        Targeted cancer exome sequencing reveals recurrent mutations in myeloproliferative neoplasms.
        Leukemia. 2014; 28: 1052-1059https://doi.org/10.1038/leu.2013.302
        • Patel K.P.
        • Newberry K.J.
        • Luthra R.
        • et al.
        Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib.
        Blood. 2015; 126: 790-797https://doi.org/10.1182/blood-2015-03-633404
        • Sood R.
        • Kamikubo Y.
        • Liu P.
        Role of RUNX1 in hematological malignancies.
        Blood. 2017; 129: 2070-2082https://doi.org/10.1182/blood-2016-10-687830
        • Ding Y.
        • Harada Y.
        • Imagawa J.
        • et al.
        AML1/RUNX1 point mutation possibly promotes leukemic transformation in myeloproliferative neoplasms.
        Blood. 2009; 114: 5201-5205https://doi.org/10.1182/blood-2009-06-223982
        • Kadia T.M.
        • Jain P.
        • Ravandi F.
        • et al.
        TP53 mutations in newly diagnosed acute myeloid leukemia: Clinicomolecular characteristics, response to therapy, and outcomes.
        Cancer. 2016; 122: 3484-3491https://doi.org/10.1002/cncr.30203
        • Rampal R.
        • Ahn J.
        • Abdel-Wahab O.
        • et al.
        Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms.
        Proc Natl Acad Sci U S A. 2014; 111: E5401-E5410https://doi.org/10.1073/pnas.1407792111
        • Kim D.Y.
        • Tariq H.
        • Brown A.F.
        • et al.
        JAK2 V617F mutation allele burden (MAB) and its correlation with hematologic characteristics in myeloproliferative neoplasms.
        Blood. 2017; 130: 5267https://doi.org/10.1182/blood.V130.Suppl_1.5267.5267
        • Passamonti F.
        • Rumi E.
        • Pietra D.
        • et al.
        A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications.
        Leukemia. 2010; 24: 1574-1579https://doi.org/10.1038/leu.2010.148
        • Vannucchi A.M.
        • Antonioli E.
        • Guglielmelli P.
        • et al.
        Prospective identification of high-risk polycythemia vera patients based on JAK2(V617F) allele burden.
        Leukemia. 2007; 21: 1952-1959https://doi.org/10.1038/sj.leu.2404854
        • Hussein K.
        • Bock O.
        • Theophile K.
        • et al.
        JAK2(V617F) allele burden discriminates essential thrombocythemia from a subset of prefibrotic-stage primary myelofibrosis.
        Exp Hematol. 2009; 37: 1186-1193.e7https://doi.org/10.1016/j.exphem.2009.07.005
        • Ha J.S.
        • Kim Y.K.
        • Jung S.I.
        • et al.
        Correlations between Janus kinase 2 V617F allele burdens and clinicohematologic parameters in myeloproliferative neoplasms.
        Ann Lab Med. 2012; 32: 385-391https://doi.org/10.3343/alm.2012.32.6.385
        • Carobbio A.
        • Finazzi G.
        • Antonioli E.
        • et al.
        JAK2V617F allele burden and thrombosis: a direct comparison in essential thrombocythemia and polycythemia vera.
        Exp Hematol. 2009; 37: 1016-1021https://doi.org/10.1016/j.exphem.2009.06.006
        • Guglielmelli P.
        • Barosi G.
        • Specchia G.
        • et al.
        Identification of patients with poorer survival in primary myelofibrosis based on the burden of JAK2V617F mutated allele.
        Blood. 2009; 114: 1477-1483https://doi.org/10.1182/blood-2009-04-216044
        • Lundberg P.
        • Karow A.
        • Nienhold R.
        • et al.
        Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms.
        Blood. 2014; 123: 2220-2228https://doi.org/10.1182/blood-2013-11-537167
        • Wolschke C.
        • Badbaran A.
        • Zabelina T.
        • et al.
        Impact of molecular residual disease post allografting in myelofibrosis patients.
        Bone Marrow Transplant. 2017; 52: 1526-1529https://doi.org/10.1038/bmt.2017.157
        • Tefferi A.
        • Guglielmelli P.
        • Lasho T.L.
        • et al.
        Mutation-enhanced international prognostic systems for essential thrombocythaemia and polycythaemia vera.
        Br J Haematol. 2020; 189: 291-302https://doi.org/10.1111/bjh.16380
        • Tefferi A.
        • Guglielmelli P.
        • Nicolosi M.
        • et al.
        GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis.
        Leukemia. 2018; 32: 1631-1642https://doi.org/10.1038/s41375-018-0107-z
        • Tefferi A.
        • Guglielmelli P.
        • Lasho T.L.
        • et al.
        MIPSS70+ version 2.0: mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis.
        J Clin Oncol. 2018; 36: 1769-1770https://doi.org/10.1200/JCO.2018.78.9867
        • Tefferi A.
        • Guglielmelli P.
        • Pardanani A.
        • et al.
        Myelofibrosis treatment algorithm 2018.
        Blood Cancer J. 2018; 8: 72https://doi.org/10.1038/s41408-018-0109-0
        • Boddu P.
        • Chihara D.
        • Masarova L.
        • et al.
        The co-occurrence of driver mutations in chronic myeloproliferative neoplasms.
        Ann Hematol. 2018; 97: 2071-2080https://doi.org/10.1007/s00277-018-3402-x
        • Harrison C.
        • Kiladjian J.J.
        • Al-Ali H.K.
        • et al.
        JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis.
        N Engl J Med. 2012; 366: 787-798https://doi.org/10.1056/NEJMoa1110556
        • Harrison C.N.
        • Vannucchi A.M.
        • Kiladjian J.J.
        • et al.
        Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis.
        Leukemia. 2016; 30: 1701-1707https://doi.org/10.1038/leu.2016.148
        • Vannucchi A.M.
        • Kiladjian J.J.
        • Griesshammer M.
        • et al.
        Ruxolitinib versus standard therapy for the treatment of polycythemia vera.
        N Engl J Med. 2015; 372: 426-435https://doi.org/10.1056/NEJMoa1409002
        • Verstovsek S.
        • Vannucchi A.M.
        • Griesshammer M.
        • et al.
        Ruxolitinib versus best available therapy in patients with polycythemia vera: 80-week follow-up from the RESPONSE trial.
        Haematologica. 2016; 101: 821-829https://doi.org/10.3324/haematol.2016.143644
        • Pardanani A.
        • Harrison C.
        • Cortes J.E.
        • et al.
        Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial.
        JAMA Oncol. 2015; 1: 643-651https://doi.org/10.1001/jamaoncol.2015.1590
        • Oh S.T.
        • Talpaz M.
        • Gerds A.T.
        • et al.
        ACVR1/JAK1/JAK2 inhibitor momelotinib reverses transfusion dependency and suppresses hepcidin in myelofibrosis phase 2 trial.
        Blood Adv. 2020; 4: 4282-4291https://doi.org/10.1182/bloodadvances.2020002662
        • Mascarenhas J.
        • Hoffman R.
        • Talpaz M.
        • et al.
        Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis: a randomized clinical trial.
        JAMA Oncol. 2018; 4: 652-659https://doi.org/10.1001/jamaoncol.2017.5818
        • Vannucchi A.M.
        • Verstovsek S.
        • Guglielmelli P.
        • et al.
        Ruxolitinib reduces JAK2 p.V617F allele burden in patients with polycythemia vera enrolled in the RESPONSE study.
        Ann Hematol. 2017; 96: 1113-1120https://doi.org/10.1007/s00277-017-2994-x
        • Masarova L.
        • Verstovsek S.
        • Hidalgo-Lopez J.E.
        • et al.
        A phase 2 study of ruxolitinib in combination with azacitidine in patients with myelofibrosis.
        Blood. 2018; 132: 1664-1674https://doi.org/10.1182/blood-2018-04-846626
        • Harrison C.N.
        • Kiladjian J.-J.
        • Heidel F.H.
        • et al.
        Efficacy, safety, and confirmation of the recommended phase 2 starting dose of the combination of ruxolitinib (RUX) and panobinostat (PAN) in patients (Pts) with myelofibrosis (MF).
        Blood. 2015; 126: 4060https://doi.org/10.1182/blood.V126.23.4060.4060
        • Patel A.A.
        • Cahill K.
        • Charnot-Katsikas A.
        • et al.
        Clinical outcomes of IDH2-mutated advanced-phase Ph-negative myeloproliferative neoplasms treated with enasidenib.
        Br J Haematol. 2020; 190: e48-e51https://doi.org/10.1111/bjh.16709
        • Li B.
        • Rampal R.K.
        • Xiao Z.
        Targeted therapies for myeloproliferative neoplasms.
        Biomark Res. 2019; 7: 15https://doi.org/10.1186/s40364-019-0166-y