Current Tools, Databases, and Resources for Phenotype and Variant Analysis of Clinical Exome Sequencing

Published:September 01, 2021DOI:https://doi.org/10.1016/j.yamp.2021.07.001
      The main approaches for incorporating phenotype data in genomic analysis include using manually curated virtual gene panels of high clinical validity, human phenotype ontology database matching, and automated screening of published literature.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Advances in Molecular Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Green E.D.
        • Guyer M.S.
        • National Human Genome Research I.
        Charting a course for genomic medicine from base pairs to bedside.
        Nature. 2011; 470: 204-213
        • Bertoli-Avella A.M.
        • Beetz C.
        • Ameziane N.
        • et al.
        Successful application of genome sequencing in a diagnostic setting: 1007 index cases from a clinically heterogeneous cohort.
        Eur J Hum Genet. 2021; 29: 141-153
        • Malinowski J.
        • Miller D.T.
        • Demmer L.
        • et al.
        Systematic evidence-based review: outcomes from exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability.
        Genet Med. 2020; 22: 986-1004
        • Clark M.M.
        • Stark Z.
        • Farnaes L.
        • et al.
        Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases.
        NPJ Genom Med. 2018; 3: 16
        • Taylor J.C.
        • Martin H.C.
        • Lise S.
        • et al.
        Factors influencing success of clinical genome sequencing across a broad spectrum of disorders.
        Nat Genet. 2015; 47: 717-726
        • Petrikin J.E.
        • Cakici J.A.
        • Clark M.M.
        • et al.
        The NSIGHT1-randomized controlled trial: rapid whole-genome sequencing for accelerated etiologic diagnosis in critically ill infants.
        NPJ Genom Med. 2018; 3: 6
        • Soden S.E.
        • Saunders C.J.
        • Willig L.K.
        • et al.
        Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders.
        Sci Transl Med. 2014; 6: 265ra168
        • Lionel A.C.
        • Costain G.
        • Monfared N.
        • et al.
        Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test.
        Genet Med. 2018; 20: 435-443
        • Bick D.
        • Fraser P.C.
        • Gutzeit M.F.
        • et al.
        Successful application of whole genome sequencing in a medical genetics clinic.
        J Pediatr Genet. 2017; 6: 61-76
        • Stavropoulos D.J.
        • Merico D.
        • Jobling R.
        • et al.
        Whole genome sequencing expands diagnostic utility and improves clinical management in pediatric medicine.
        NPJ Genom Med. 2016; https://doi.org/10.1038/npjgenmed.2015.12
        • Mardis E.R.
        DNA sequencing technologies: 2006-2016.
        Nat Protoc. 2017; 12: 213-218
        • Levy S.E.
        • Myers R.M.
        Advancements in next-generation sequencing.
        Annu Rev Genomics Hum Genet. 2016; 17: 95-115
        • Schloss J.A.
        • Gibbs R.A.
        • Makhijani V.B.
        • et al.
        Cultivating DNA sequencing technology after the Human Genome Project.
        Annu Rev Genomics Hum Genet. 2020; 21: 117-138
        • Karczewski K.J.
        • Francioli L.C.
        • Tiao G.
        • et al.
        The mutational constraint spectrum quantified from variation in 141,456 humans.
        Nature. 2020; 581: 434-443
        • Collins R.L.
        • Brand H.
        • Karczewski K.J.
        • et al.
        A structural variation reference for medical and population genetics.
        Nature. 2020; 581: 444-451
        • Genomes Project C.
        • Abecasis G.R.
        • Auton A.
        • et al.
        An integrated map of genetic variation from 1,092 human genomes.
        Nature. 2012; 491: 56-65
        • Bamshad M.J.
        • Nickerson D.A.
        • Chong J.X.
        Mendelian gene discovery: fast and furious with no end in sight.
        Am J Hum Genet. 2019; 105: 448-455
        • Chong J.X.
        • Buckingham K.J.
        • Jhangiani S.N.
        • et al.
        The genetic basis of Mendelian phenotypes: discoveries, challenges, and opportunities.
        Am J Hum Genet. 2015; 97: 199-215
        • Posey J.E.
        • O'Donnell-Luria A.H.
        • Chong J.X.
        • et al.
        Insights into genetics, human biology and disease gleaned from family based genomic studies.
        Genet Med. 2019; 21: 798-812
        • Landrum M.J.
        • Lee J.M.
        • Benson M.
        • et al.
        ClinVar: public archive of interpretations of clinically relevant variants.
        Nucleic Acids Res. 2016; 44: D862-D868
        • Manolio T.A.
        • Chisholm R.L.
        • Ozenberger B.
        • et al.
        Implementing genomic medicine in the clinic: the future is here.
        Genet Med. 2013; 15: 258-267
        • Retterer K.
        • Juusola J.
        • Cho M.T.
        • et al.
        Clinical application of whole-exome sequencing across clinical indications.
        Genet Med. 2016; 18: 696-704
        • Yang Y.
        • Muzny D.M.
        • Reid J.G.
        • et al.
        Clinical whole-exome sequencing for the diagnosis of mendelian disorders.
        N Engl J Med. 2013; 369: 1502-1511
        • Kalia S.S.
        • Adelman K.
        • Bale S.J.
        • et al.
        Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics.
        Genet Med. 2017; 19: 249-255
        • Cheema H.
        • Bertoli-Avella A.M.
        • Skrahina V.
        • et al.
        Genomic testing in 1019 individuals from 349 Pakistani families results in high diagnostic yield and clinical utility.
        NPJ Genom Med. 2020; 5: 44
        • Jayasinghe K.
        • Stark Z.
        • Kerr P.G.
        • et al.
        Clinical impact of genomic testing in patients with suspected monogenic kidney disease.
        Genet Med. 2021; 23: 183-191
        • Freed A.S.
        • Clowes Candadai S.V.
        • Sikes M.C.
        • et al.
        The impact of rapid exome sequencing on medical management of critically ill children.
        J Pediatr. 2020; https://doi.org/10.1016/j.jpeds.2020.06.020
        • Li C.
        • Vandersluis S.
        • Holubowich C.
        • et al.
        Cost-effectiveness of genome-wide sequencing for unexplained developmental disabilities and multiple congenital anomalies.
        Genet Med. 2020; https://doi.org/10.1038/s41436-020-01012-w
        • Vissers L.
        • van Nimwegen K.J.M.
        • Schieving J.H.
        • et al.
        A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology.
        Genet Med. 2017; 19: 1055-1063
        • Stark Z.
        • Schofield D.
        • Alam K.
        • et al.
        Prospective comparison of the cost-effectiveness of clinical whole-exome sequencing with that of usual care overwhelmingly supports early use and reimbursement.
        Genet Med. 2017; 19: 867-874
        • Tan T.Y.
        • Dillon O.J.
        • Stark Z.
        • et al.
        Diagnostic impact and cost-effectiveness of whole-exome sequencing for ambulant children with suspected monogenic conditions.
        JAMA Pediatr. 2017; 171: 855-862
        • Schofield D.
        • Alam K.
        • Douglas L.
        • et al.
        Cost-effectiveness of massively parallel sequencing for diagnosis of paediatric muscle diseases.
        NPJ Genom Med. 2017; 2doihttps://doi.org/10.1038/s41525-017-0006-7
        • Farnaes L.
        • Hildreth A.
        • Sweeney N.M.
        • et al.
        Rapid whole-genome sequencing decreases infant morbidity and cost of hospitalization.
        NPJ Genom Med. 2018; 3: 10
        • Srivastava S.
        • Love-Nichols J.A.
        • Dies K.A.
        • et al.
        Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders.
        Genet Med. 2019; 21: 2413-2421
        • Kingsmore S.F.
        • Cakici J.A.
        • Clark M.M.
        • et al.
        A randomized, controlled trial of the analytic and diagnostic performance of singleton and trio, rapid genome and exome sequencing in ill infants.
        Am J Hum Genet. 2019; 105: 719-733
        • Hegde M.
        • Santani A.
        • Mao R.
        • et al.
        Development and validation of clinical whole-exome and whole-genome sequencing for detection of germline variants in inherited disease.
        Arch Pathol Lab Med. 2017; 141: 798-805
        • Roy S.
        • Coldren C.
        • Karunamurthy A.
        • et al.
        Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: a joint recommendation of the Association for Molecular Pathology and the College of American Pathologists.
        J Mol Diagn. 2018; 20: 4-27
        • Richards S.
        • Aziz N.
        • Bale S.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
        Genet Med. 2015; 17: 405-424
        • Kohler S.
        • Carmody L.
        • Vasilevsky N.
        • et al.
        Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources.
        Nucleic Acids Res. 2019; 47: D1018-D1027
        • Groza T.
        • Kohler S.
        • Moldenhauer D.
        • et al.
        The Human Phenotype Ontology: semantic unification of common and rare disease.
        Am J Hum Genet. 2015; 97: 111-124
        • Robinson P.N.
        • Kohler S.
        • Bauer S.
        • et al.
        The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease.
        Am J Hum Genet. 2008; 83: 610-615
        • Amberger J.S.
        • Bocchini C.A.
        • Schiettecatte F.
        • et al.
        OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders.
        Nucleic Acids Res. 2015; 43: D789-D798
        • Stenson P.D.
        • Mort M.
        • Ball E.V.
        • et al.
        The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies.
        Hum Genet. 2017; 136: 665-677
        • Ayme S.
        [Orphanet, an information site on rare diseases].
        Soins. 2003; (Orphanet, un serveur d'informations sur les maladies rares): 46-47
      1. Adam MPDM, A.; Ardinger, H. H.; Pagon, R. A.; Wallace, S. E.; Bean, L. J. H.; Mirzaa, G.; Amemiya, A. GeneReviews.
        (Available at:) (Accessed May, 2021)
        • Fiorini N.
        • Lipman D.J.
        • Lu Z.
        Towards PubMed 2.0.
        Elife. 2017; 6https://doi.org/10.7554/eLife.28801
        • Sayers E.W.
        • Barrett T.
        • Benson D.A.
        • et al.
        Database resources of the National Center for Biotechnology Information.
        Nucleic Acids Res. 2011; 39: D38-D51
        • Chunn L.M.
        • Nefcy D.C.
        • Scouten R.W.
        • et al.
        Mastermind: a comprehensive genomic association search engine for empirical evidence curation and genetic variant interpretation.
        Front Genet. 2020; 11: 577152
        • Buske O.J.
        • Girdea M.
        • Dumitriu S.
        • et al.
        PhenomeCentral: a portal for phenotypic and genotypic matchmaking of patients with rare genetic diseases.
        Hum Mutat. 2015; 36: 931-940
        • Martin A.R.
        • Williams E.
        • Foulger R.E.
        • et al.
        PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels.
        Nat Genet. 2019; 51: 1560-1565
        • Strande N.T.
        • Riggs E.R.
        • Buchanan A.H.
        • et al.
        Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical genome resource.
        Am J Hum Genet. 2017; 100: 895-906
        • Jagadeesh K.A.
        • Birgmeier J.
        • Guturu H.
        • et al.
        Phrank measures phenotype sets similarity to greatly improve Mendelian diagnostic disease prioritization.
        Genet Med. 2019; 21: 464-470
        • Singleton M.V.
        • Guthery S.L.
        • Voelkerding K.V.
        • et al.
        Phevor combines multiple biomedical ontologies for accurate identification of disease-causing alleles in single individuals and small nuclear families.
        Am J Hum Genet. 2014; 94: 599-610
        • Yang H.
        • Robinson P.N.
        • Wang K.
        Phenolyzer: phenotype-based prioritization of candidate genes for human diseases.
        Nat Methods. 2015; 12: 841-843
        • Javed A.
        • Agrawal S.
        • Ng P.C.
        Phen-Gen: combining phenotype and genotype to analyze rare disorders.
        Nat Methods. 2014; 11: 935-937
        • Resnik P.
        Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language.
        J Artifial Intelligence Res. 1999; 11: 95-130
      2. Lin D. An information-theoretic definition of similarity. 1998.

      3. Jiang JJ, Conrath D. Semantic similarity based on corpus statistics and lexical taxonomy. 1997.

        • Wu C.
        • Devkota B.
        • Evans P.
        • et al.
        Rapid and accurate interpretation of clinical exomes using Phenoxome: a computational phenotype-driven approach.
        Eur J Hum Genet. 2019; 27: 612-620
        • Peng J.
        • Hui W.
        • Shang X.
        Measuring phenotype-phenotype similarity through the interactome.
        BMC Bioinformatics. 2018; 19: 114
        • Smedley D.
        • Jacobsen J.O.
        • Jager M.
        • et al.
        Next-generation diagnostics and disease-gene discovery with the Exomiser.
        Nat Protoc. 2015; 10: 2004-2015
        • Birgmeier J.
        • Haeussler M.
        • Deisseroth C.A.
        • et al.
        AMELIE speeds Mendelian diagnosis by matching patient phenotype and genotype to primary literature.
        Sci Transl Med. 2020; : 12
        • Robinson P.N.
        • Kohler S.
        • Oellrich A.
        • et al.
        Improved exome prioritization of disease genes through cross-species phenotype comparison.
        Genome Res. 2014; 24: 340-348
        • Smedley D.
        • Oellrich A.
        • Kohler S.
        • et al.
        PhenoDigm: analyzing curated annotations to associate animal models with human diseases.
        Database (Oxford). 2013; 2013: bat025
        • Hombach D.
        • Schwarz J.M.
        • Knierim E.
        • et al.
        Phenotero: annotate as you write.
        Clin Genet. 2019; 95: 287-292
        • Girdea M.
        • Dumitriu S.
        • Fiume M.
        • et al.
        PhenoTips: patient phenotyping software for clinical and research use.
        Hum Mutat. 2013; 34: 1057-1065
        • Kohler S.
        • Schulz M.H.
        • Krawitz P.
        • et al.
        Clinical diagnostics in human genetics with semantic similarity searches in ontologies.
        Am J Hum Genet. 2009; 85: 457-464
        • Zhang X.A.
        • Yates A.
        • Vasilevsky N.
        • et al.
        Semantic integration of clinical laboratory tests from electronic health records for deep phenotyping and biomarker discovery.
        NPJ Digit Med. 2019; 2https://doi.org/10.1038/s41746-019-0110-4
        • Deisseroth C.A.
        • Birgmeier J.
        • Bodle E.E.
        • et al.
        ClinPhen extracts and prioritizes patient phenotypes directly from medical records to expedite genetic disease diagnosis.
        Genet Med. 2019; 21: 1585-1593
        • Liu C.
        • Peres Kury F.S.
        • Li Z.
        • et al.
        Doc2Hpo: a web application for efficient and accurate HPO concept curation.
        Nucleic Acids Res. 2019; 47: W566-W570
        • Savova G.K.
        • Masanz J.J.
        • Ogren P.V.
        • et al.
        Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications.
        J Am Med Inform Assoc. 2010; 17: 507-513
        • Aronson A.R.
        Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program.
        Proc AMIA Symp. 2001; : 17-21
        • Son J.H.
        • Xie G.
        • Yuan C.
        • et al.
        Deep phenotyping on electronic health records facilitates genetic diagnosis by clinical exomes.
        Am J Hum Genet. 2018; 103: 58-73
        • Zhao M.
        • Havrilla J.M.
        • Fang L.
        • et al.
        Phen2Gene: rapid phenotype-driven gene prioritization for rare diseases.
        NAR Genom Bioinform. 2020; 2: lqaa032
        • Robinson P.N.
        • Ravanmehr V.
        • Jacobsen J.O.B.
        • et al.
        Interpretable clinical genomics with a likelihood ratio paradigm.
        Am J Hum Genet. 2020; 107: 403-417
        • Fujiwara T.
        • Yamamoto Y.
        • Kim J.D.
        • et al.
        PubCaseFinder: A case-report-based, phenotype-driven differential-diagnosis system for rare diseases.
        Am J Hum Genet. 2018; 103: 389-399
        • Tavtigian S.V.
        • Greenblatt M.S.
        • Harrison S.M.
        • et al.
        Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework.
        Genet Med. 2018; 20: 1054-1060
        • Tavtigian S.V.
        • Harrison S.M.
        • Boucher K.M.
        • et al.
        Fitting a naturally scaled point system to the ACMG/AMP variant classification guidelines.
        Hum Mutat. 2020; https://doi.org/10.1002/humu.24088
        • Abou Tayoun A.N.
        • Pesaran T.
        • DiStefano M.T.
        • et al.
        Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion.
        Hum Mutat. 2018; 39: 1517-1524
        • Xiang J.
        • Peng J.
        • Baxter S.
        • et al.
        AutoPVS1: an automatic classification tool for PVS1 interpretation of null variants.
        Hum Mutat. 2020; 41: 1488-1498
        • Landrum M.J.
        • Chitipiralla S.
        • Brown G.R.
        • et al.
        ClinVar: improvements to accessing data.
        Nucleic Acids Res. 2020; 48: D835-D844
      4. Genomenon. Mastermind genomic search engine.
        (Available at:) (Accessed May, 2021)
        • Sequence C.G.R.
        SVI general recommendations for using ACMG/AMP criteria.
        (Available at:) (Accessed May, 2021)
        • Brnich S.E.
        • Abou Tayoun A.N.
        • Couch F.J.
        • et al.
        Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework.
        Genome Med. 2019; 12: 3
        • Findlay G.M.
        • Daza R.M.
        • Martin B.
        • et al.
        Accurate classification of BRCA1 variants with saturation genome editing.
        Nature. 2018; 562: 217-222
        • Jia X.
        • Burugula B.B.
        • Chen V.
        • et al.
        Massively parallel functional testing of MSH2 missense variants conferring Lynch syndrome risk.
        Am J Hum Genet. 2021; 108: 163-175
        • Esposito D.
        • Weile J.
        • Shendure J.
        • et al.
        MaveDB: an open-source platform to distribute and interpret data from multiplexed assays of variant effect.
        Genome Biol. 2019; 20: 223
        • Waring A.
        • Harper A.
        • Salatino S.
        • et al.
        Data-driven modelling of mutational hotspots and in silico predictors in hypertrophic cardiomyopathy.
        J Med Genet. 2020; https://doi.org/10.1136/jmedgenet-2020-106922
        • Dines J.N.
        • Shirts B.H.
        • Slavin T.P.
        • et al.
        Systematic misclassification of missense variants in BRCA1 and BRCA2 "coldspots".
        Genet Med. 2020; 22: 825-830
        • Savige J.
        • Storey H.
        • Watson E.
        • et al.
        Consensus statement on standards and guidelines for the molecular diagnostics of Alport syndrome: refining the ACMG criteria.
        Eur J Hum Genet. 2021; https://doi.org/10.1038/s41431-021-00858-1
        • Mistry J.
        • Chuguransky S.
        • Williams L.
        • et al.
        Pfam: the protein families database in 2021.
        Nucleic Acids Res. 2021; 49: D412-D419
        • UniProt C.
        UniProt: the universal protein knowledgebase in 2021.
        Nucleic Acids Res. 2021; 49: D480-D489
        • Lek M.
        • Karczewski K.J.
        • Minikel E.V.
        • et al.
        Analysis of protein-coding genetic variation in 60,706 humans.
        Nature. 2016; 536: 285-291
        • Rivera-Munoz E.A.
        • Milko L.V.
        • Harrison S.M.
        • et al.
        ClinGen Variant Curation Expert Panel experiences and standardized processes for disease and gene-level specification of the ACMG/AMP guidelines for sequence variant interpretation.
        Hum Mutat. 2018; 39: 1614-1622
        • Milko L.V.
        • Funke B.H.
        • Hershberger R.E.
        • et al.
        Development of clinical domain working groups for the Clinical Genome Resource (ClinGen): lessons learned and plans for the future.
        Genet Med. 2019; 21: 987-993
        • Sequence C.G.R.
        ClinGen expert panels.
        (Available at:) (Accessed May, 2021)
        • Oza A.M.
        • DiStefano M.T.
        • Hemphill S.E.
        • et al.
        Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss.
        Hum Mutat. 2018; 39: 1593-1613
        • Lee K.
        • Krempely K.
        • Roberts M.E.
        • et al.
        Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline CDH1 sequence variants.
        Hum Mutat. 2018; 39: 1553-1568
        • Fortuno C.
        • Lee K.
        • Olivier M.
        • et al.
        Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants.
        Hum Mutat. 2021; 42: 223-236
        • Ioannidis N.M.
        • Rothstein J.H.
        • Pejaver V.
        • et al.
        REVEL: an ensemble method for predicting the pathogenicity of rare missense variants.
        Am J Hum Genet. 2016; 99: 877-885
        • Alirezaie N.
        • Kernohan K.D.
        • Hartley T.
        • et al.
        ClinPred: prediction tool to identify disease-relevant nonsynonymous single-nucleotide variants.
        Am J Hum Genet. 2018; 103: 474-483
        • Jaganathan K.
        • Kyriazopoulou Panagiotopoulou S.
        • McRae J.F.
        • et al.
        Predicting splicing from primary sequence with deep learning.
        Cell. 2019; 176: 535-548 e24
        • James K.N.
        • Clark M.M.
        • Camp B.
        • et al.
        Partially automated whole-genome sequencing reanalysis of previously undiagnosed pediatric patients can efficiently yield new diagnoses.
        NPJ Genom Med. 2020; 5: 33
        • Liu P.
        • Meng L.
        • Normand E.A.
        • et al.
        Reanalysis of clinical exome sequencing data.
        N Engl J Med. 2019; 380: 2478-2480
        • Miller D.T.
        • Lee K.
        • Chung W.K.
        • et al.
        ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG).
        Genet Med. 2021; (10.1038/s41436- 021-01172-3)
        • Green R.C.
        • Berg J.S.
        • Grody W.W.
        • et al.
        ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing.
        Genet Med. 2013; 15: 565-574
        • Schwarz J.M.
        • Cooper D.N.
        • Schuelke M.
        • et al.
        MutationTaster2: mutation prediction for the deep-sequencing age.
        Nat Methods. 2014; 11: 361-362
        • Quang D.
        • Chen Y.
        • Xie X.
        DANN: a deep learning approach for annotating the pathogenicity of genetic variants.
        Bioinformatics. 2015; 31: 761-763
        • Boudellioua I.
        • Kulmanov M.
        • Schofield P.N.
        • et al.
        DeepPVP: phenotype-based prioritization of causative variants using deep learning.
        BMC Bioinformatics. 2019; 20: 65
        • Price W.N.
        Big data and black-box medical algorithms.
        Sci Transl Med. 2018; 10https://doi.org/10.1126/scitranslmed.aao5333
        • Bjerring J.C.
        • Busch J.
        Artificial intelligence and patient-centered decision-making.
        Philosophy & Technology, 2020https://doi.org/10.1007/s13347-019-00391-6
        • Powis Z.
        • Farwell Hagman K.D.
        • Speare V.
        • et al.
        Exome sequencing in neonates: diagnostic rates, characteristics, and time to diagnosis.
        Genet Med. 2018; 20: 1468-1471
        • Thiffault I.
        • Farrow E.
        • Zellmer L.
        • et al.
        Clinical genome sequencing in an unbiased pediatric cohort.
        Genet Med. 2019; 21: 303-310
        • Baker S.W.
        • Murrell J.R.
        • Nesbitt A.I.
        • et al.
        Automated clinical exome reanalysis reveals novel diagnoses.
        J Mol Diagn. 2019; 21: 38-48
        • Wenger A.M.
        • Guturu H.
        • Bernstein J.A.
        • et al.
        Systematic reanalysis of clinical exome data yields additional diagnoses: implications for providers.
        Genet Med. 2017; 19: 209-214
        • Sifrim A.
        • Popovic D.
        • Tranchevent L.C.
        • et al.
        eXtasy: variant prioritization by genomic data fusion.
        Nat Methods. 2013; 10: 1083-1084
        • Koile D.
        • Cordoba M.
        • de Sousa Serro M.
        • et al.
        GenIO: a phenotype-genotype analysis web server for clinical genomics of rare diseases.
        BMC Bioinformatics. 2018; 19: 25