Engineering Consideration for Emerging Essential Nucleic Acid Tests for Point-of-Care Diagnostics

Published:September 01, 2021DOI:https://doi.org/10.1016/j.yamp.2021.07.003
      The World Health Organization (WHO) has convened experts annually to develop and revise global recommendations and strategies for implementing essential diagnostic assays.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Advances in Molecular Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. WHO. First WHO model list of essential in vitro diagnostics. World Health Organization, 2019
        • WHO
        Report of the second meeting of the strategic advisory group of experts on in vitro diagnostics.
        World Health Organization, Geneva, Switzerland2019
      2. WHO. The selection and use of essential in vitro diagnostics - TRS 1031. World Health Organization, 2021
        • Kosack C.S.
        • Page A.-L.
        • Klaster P.R.
        WHO | A guide to aid the selection of diagnostic tests.
        Bull World Health Organ. 2017; 95: 639-645
        • Curtis K.A.
        • Rudolph D.L.
        • Owen S.M.
        Rapid detection of HIV-1 by reverse-transcription, loop-mediated isothermal amplification (RT-LAMP).
        J Virol Methods. 2008; 151: 264-270
        • Turner S.A.
        • Deharvengt S.J.
        • Lyons K.D.
        • et al.
        Implementation of multicolor melt curve analysis for high-risk human papilloma virus detection in low- and middle-income countries: a pilot study for expanded cervical cancer screening in Honduras.
        J Glob Oncol. 2017; : 1-8
        • Walker F.M.
        • Hsieh K.
        Advances in directly amplifying nucleic acids from complex samples.
        Biosensors. 2019; 9: 117
        • Paul R.
        • Ostermann E.
        • Wei Q.
        Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases.
        Biosens Bioelectron. 2020; 169: 112592
        • Park S.
        • Zhang Y.
        • Lin S.
        • et al.
        Advances in microfluidic PCR for point-of-care infectious disease diagnostics.
        Biotechnol Adv. 2011; 29: 830-839
        • Liu W.
        • Zhang M.
        • Liu X.
        • et al.
        A point-of-need infrared mediated PCR platform with compatible lateral flow strip for HPV detection.
        Biosens Bioelectron. 2017; 96: 213-219
        • Compton J.
        Nucleic acid sequence-based amplification.
        Nature. 1991; 350: 91-92
        • Notomi T.
        • Okayama H.
        • Masubuchi H.
        • et al.
        Loop-mediated isothermal amplification of DNA.
        Nucleic Acids Res. 2000; 28: e63
        • Becherer L.
        • Borst N.
        • Bakheit M.
        • et al.
        Loop-mediated isothermal amplification (LAMP) – review and classification of methods for sequence-specific detection.
        Anal Methods. 2020; 12: 717-746
        • Vincent M.
        • Xu Y.
        • Kong H.
        Helicase-dependent isothermal DNA amplification.
        EMBO Rep. 2004; 5: 795-800
        • Piepenburg O.
        • Williams C.H.
        • Stemple D.L.
        • et al.
        DNA detection using recombination proteins.
        PLoS Biol. 2006; 4: e204
        • Li J.
        • Macdonald J.
        • Stetten F.
        Review: a comprehensive summary of a decade development of the recombinase polymerase amplification.
        Analyst. 2018; 144: 31-67
        • Li J.
        • Macdonald J.
        Advances in isothermal amplification: novel strategies inspired by biological processes.
        Biosens Bioelectron. 2015; 64: 196-211
        • Cong L.
        • Ran F.A.
        • Cox D.
        • et al.
        Multiplex genome engineering using CRISPR/Cas systems.
        Science. 2013; 339: 819-823
        • Mali P.
        • Yang L.
        • Esvelt K.M.
        • et al.
        RNA-guided human genome engineering via cas9.
        Science. 2013; 339: 823-826
        • Pardee K.
        • Green A.A.
        • Takahashi M.K.
        • et al.
        Rapid, low-cost detection of zika virus using programmable biomolecular components.
        Cell. 2016; 165: 1255-1266
        • Huang M.
        • Zhou X.
        • Wang H.
        • et al.
        Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection.
        Anal Chem. 2018; 90: 2193-2200
        • Gootenberg J.S.
        • Abudayyeh O.
        • Kellner M.J.
        • et al.
        Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6.
        Science. 2018; 360: 439-444
        • Li Y.
        • Li S.
        • Wang J.
        • et al.
        CRISPR/Cas systems towards next-generation biosensing.
        Trends Biotechnol. 2019; 37: 730-743
        • Yager P.
        • Edwards T.
        • Fu E.
        • et al.
        Microfluidic diagnostic technologies for global public health.
        Nature. 2006; 442: 412-418
        • Rodriguez-Manzano J.
        • Karymov M.A.
        • Begolo S.
        • et al.
        Reading out single-molecule digital RNA and DNA isothermal amplification in nanoliter volumes with unmodified camera phones.
        ACS Nano. 2016; 10: 3102-3113
        • Wang C.
        • Liu M.
        • Wang Z.
        • et al.
        Point-of-care diagnostics for infectious diseases: from methods to devices.
        Nano Today. 2021; 37: 101092
        • Yoo S.M.
        • Lee S.Y.
        Optical biosensors for the detection of pathogenic microorganisms.
        Trends Biotechnol. 2016; 34: 7-25
        • McCracken E.
        • Yoon J.-Y.
        Recent approaches for optical smartphone sensing in resource-limited settings: a brief review.
        Anal Methods. 2016; 8: 6591-6601
        • Chen L.
        • Manz A.
        • Day R.
        • et al.
        Total nucleic acid analysis integrated on microfluidic devices.
        Lab Chip. 2007; 7: 1413-1423
        • Bahadır E.B.
        • Sezgintürk M.K.
        Lateral flow assays: principles, designs and labels.
        Trac Trends Anal Chem. 2016; 82: 286-306
        • Jang Y.-H.
        • Kwon C.H.
        • Kim S.B.
        • et al.
        Deep wells integrated with microfluidic valves for stable docking and storage of cells.
        Biotechnol J. 2011; 6: 156-164
        • Kathrada A.I.
        • Wei S.-C.
        • Xu Y.
        • et al.
        Microfluidic compartmentalization to identify gene biomarkers of infection.
        Biomicrofluidics. 2020; 14: 061502
        • Zhang J.
        • Hoshino K.
        Molecular sensors and nanodevices.
        Elsevier, Oxford, UK2014https://doi.org/10.1016/C2012-0-07668-5
        • Burklund A.
        • Tadimety A.
        • Nie Y.
        • et al.
        Chapter one - advances in diagnostic microfluidics.
        in: Advances in clinical chemistry. vol. 95. Elsevier, Oxford, UK2020: 1-72
        • Brody J.P.
        • Yager P.
        Diffusion-based extraction in a microfabricated device.
        Sens Actuators Phys. 1997; 58: 13-18
        • Munyan W.
        • Fuentes V.
        • Draper M.
        • et al.
        Electrically actuated, pressure-driven microfluidic pumps.
        Lab Chip. 2003; 3: 217-220
      3. Monolithic microfabricated valves and pumps by multilayer soft lithography | Science.
        (Available at:)
        • Lutz S.
        • Weber P.
        • Focke M.
        • et al.
        Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA).
        Lab Chip. 2010; 10: 887-893
        • Clime L.
        • Daoud J.
        • Brassard D.
        • et al.
        Active pumping and control of flows in centrifugal microfluidics.
        Microfluid Nanofluidics. 2019; 23: 29
        • Zhukov V.
        • Khorosheva E.M.
        • Khazaei T.
        • et al.
        Microfluidic SlipChip device for multistep multiplexed biochemistry on a nanoliter scale.
        Lab Chip. 2019; 19: 3200-3211
        • Yu Z.
        • Lyu W.
        • Yu M.
        • et al.
        Self-partitioning SlipChip for slip-induced droplet formation and human papillomavirus viral load quantification with digital LAMP.
        Biosens Bioelectron. 2020; 155: 112107
        • Ghosh S.
        • Aggarwal K.
        • Vinitha T.U.
        • et al.
        A new microchannel capillary flow assay (MCFA) platform with lyophilized chemiluminescence reagents for a smartphone-based POCT detecting malaria.
        Microsyst Nanoeng. 2020; 6: 1-18
        • Mauk M.G.
        • Song J.
        • Liu C.
        • et al.
        Simple approaches to minimally-instrumented, microfluidic-based point-of-care nucleic acid amplification tests.
        Biosensors. 2018; 8: 17
        • Zhang C.
        • Xing D.
        • Li Y.
        Micropumps, microvalves, and micromixers within PCR microfluidic chips: advances and trends.
        Biotechnol Adv. 2007; 25: 483-514
        • Smith S.
        • Mager D.
        • Perebikovsky A.
        • et al.
        CD-based microfluidics for primary care in extreme point-of-care settings.
        Micromachines. 2016; 7: 22
        • Connelly J.T.
        • Rolland J.P.
        • Whitesides G.M.
        “Paper machine” for molecular diagnostics.
        Anal Chem. 2015; 87: 7595-7601
        • Ru Choi J.
        • Hu J.
        • Tang R.
        • et al.
        An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care.
        Lab Chip. 2016; 16: 611-621
        • Fang X.
        • Guan M.
        • Kong J.
        Rapid nucleic acid detection of Zaire ebolavirus on paper fluidics.
        RSC Adv. 2015; 5: 64614-64616
        • Trieu P.T.
        • Lee N.Y.
        Paper-based all-in-one origami microdevice for nucleic acid amplification testing for rapid colorimetric identification of live cells for point-of-care testing.
        Anal Chem. 2019; 91: 11013-11022
        • Burklund A.
        • Saturley-Hall H.K.
        • Franchina F.A.
        • et al.
        Printable QR code paper microfluidic colorimetric assay for screening volatile biomarkers.
        Biosens Bioelectron. 2019; 128: 97-103
        • Magro L.
        • Escadafal C.
        • Garneret P.
        • et al.
        Paper microfluidics for nucleic acid amplification testing (NAAT) of infectious diseases.
        Lab Chip. 2017; 17: 2347-2371
        • Hu J.
        • Wang S.
        • Wang L.
        • et al.
        Advances in paper-based point-of-care diagnostics.
        Biosens Bioelectron. 2014; 54: 585-597
        • Eltzov E.
        • Guttel S.
        • Low Yuen Kei A.
        • et al.
        Lateral flow immunoassays – from paper strip to smartphone technology.
        Electroanalysis. 2015; 27: 2116-2130
        • Hernández-Neuta I.
        • Neumann F.
        • Brightmeyer J.
        • et al.
        Smartphone-based clinical diagnostics: towards democratization of evidence-based health care.
        J Intern Med. 2019; 285: 19-39
        • Priye A.
        • Wong S.
        • Bi Y.
        • et al.
        Lab-on-a-drone: toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care.
        Anal Chem. 2016; 88: 4651-4660
        • Wu X.
        • Pan J.
        • Zhu X.
        • et al.
        MS 2 device: smartphone-facilitated mobile nucleic acid analysis on microfluidic device.
        Analyst. 2021; https://doi.org/10.1039/D1AN00367D
        • Yang H.
        • Chen Z.
        • Cao X.
        • et al.
        A sample-in-digital-answer-out system for rapid detection and quantitation of infectious pathogens in bodily fluids.
        Anal Bioanal Chem. 2018; 410: 7019-7030
        • Rolando J.C.
        • Jue E.
        • Schoepp N.G.
        • et al.
        Real-time, digital LAMP with commercial microfluidic chips reveals the interplay of efficiency, speed, and background amplification as a function of reaction temperature and time.
        Anal Chem. 2019; 91: 1034-1042
        • Agutu C.A.
        • Ngetsa C.J.
        • Price M.A.
        • et al.
        Systematic review of the performance and clinical utility of point of care HIV-1 RNA testing for diagnosis and care.
        PLoS One. 2019; 14: e0218369
      4. Cepheid | HIV-1 molecular test - Xpert HIV-1 qual.
        (Available at:) (Accessed April 30, 2021)
      5. m-PIMATM HIV-1/2 detect.
        (Available at:) (Accessed April 30, 2021)
        • Farfour E.
        • Roux A.
        • Ballester M.
        • et al.
        Improved performances of the second generation of the ID NOW influenza A&B 2® and comparison with the GeneXpert®.
        Eur J Clin Microbiol Infect Dis. 2020; 39: 1681-1686