Emerging Molecular Diagnostic Methods for Prosthetic Joint Infections

Published:September 01, 2021DOI:https://doi.org/10.1016/j.yamp.2021.07.004
      Prosthetic joint infection (PJI) is a challenging diagnostic space with critical, time-sensitive clinical outcomes.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Advances in Molecular Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tande A.J.
        • Patel R.
        Prosthetic joint infection.
        Clin Microbiol Rev. 2014; 27: 302-345
        • Beam E.
        • Osmon D.
        Prosthetic joint infection update.
        Infect Dis Clin North Am. 2018; 32https://doi.org/10.1016/j.idc.2018.06.005
        • Bémer P.
        • Plouzeau C.
        • Tande D.
        • et al.
        Evaluation of 16S rRNA gene PCR sensitivity and specificity for diagnosis of prosthetic joint infection: a prospective multicenter cross-sectional study.
        J Clin Microbiol. 2014; 52: 3583-3589
        • Xu Y.
        • Rudkjøbing V.B.
        • Simonsen O.
        • et al.
        Bacterial diversity in suspected prosthetic joint infections: an exploratory study using 16S rRNA gene analysis.
        FEMS Immunol Med Microbiol. 2012; 65: 291-304
        • Parvizi J.
        • Zmistowski B.
        • Berbari E.F.
        • et al.
        New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society.
        Clin Orthop Relat Res. 2011; 469: 2992-2994
        • Parvizi J.
        • Tan T.L.
        • Goswami K.
        • et al.
        The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria.
        J Arthroplasty. 2018; 33: 1309-1314.e2
        • Schwotzer N.
        • Wahl P.
        • Fracheboud D.
        • et al.
        Optimal culture incubation time in orthopedic device-associated infections: a retrospective analysis of prolonged 14-day incubation.
        J Clin Microbiol. 2014; 52: 61-66
        • Yoon H.K.
        • Cho S.H.
        • Lee D.Y.
        • et al.
        A review of the literature on culture-negative periprosthetic joint infection: epidemiology, diagnosis and treatment.
        Knee Surg Relat Res. 2017; 29: 155-164
        • Tzeng A.
        • Tzeng T.H.
        • Vasdev S.
        • et al.
        Treating periprosthetic joint infections as biofilms: key diagnosis and management strategies.
        Diagn Microbiol Infect Dis. 2015; 81: 192-200
        • Eid J.
        • Fehr A.
        • Gray J.
        • et al.
        Real-time DNA sequencing from single polymerase molecules.
        Science. 2009; 323: 133-138
        • Palan J.
        • Nolan C.
        • Sarantos K.
        • et al.
        Culture-negative periprosthetic joint infections.
        EFORT Open Rev. 2019; 4: 585-594
        • Durazzi F.
        • Sala C.
        • Castellani G.
        • et al.
        Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota.
        Sci Rep. 2021; 11: 3030
        • Unverdorben L.
        • Goswami K.
        • Wright
        • et al.
        Synovial fluid sequencing: a look into the future of prosthetic joint infection detection.
        FASEB J. 2020; 34: 1
        • Street T.L.
        • Sanderson N.D.
        • Atkins B.L.
        • et al.
        Molecular diagnosis of orthopedic-device-related infection directly from sonication fluid by metagenomic sequencing.
        J Clin Microbiol Jul. 2017; 55: 2334-2347
        • Thoendel M.J.
        • Jeraldo P.R.
        • Greenwood-Quaintance K.E.
        • et al.
        Identification of prosthetic joint infection pathogens using a shotgun metagenomics approach.
        Clin Infect Dis. 2018; 67: 1333-1338
        • Renz N.
        • Feihl S.
        • Cabric S.
        • et al.
        Performance of automated multiplex PCR using sonication fluid for diagnosis of periprosthetic joint infection: a prospective cohort.
        Infection. 2017; 45: 877-884
        • Morgenstern C.
        • Cabric S.
        • Perka C.
        • et al.
        Synovial fluid multiplex PCR is superior to culture for detection of low-virulent pathogens causing periprosthetic joint infection.
        Diagn Microbiol Infect Dis. 2018; 90: 115-119
        • Sigmund I.K.
        • Windhager R.
        • Sevelda F.
        • et al.
        Multiplex PCR Unyvero i60 ITI application improves detection of low-virulent microorganisms in periprosthetic joint infections.
        Int Orthop. 2019; 43: 1891-1898
        • Zhang Y.
        • Feng S.
        • Chen W.
        • et al.
        Advantages of 16S rRNA PCR for the diagnosis of prosthetic joint infection.
        Exp Ther Med. 2020; 20: 3104-3113
        • Sahlin K.
        • Medvedev P.
        Error correction enables use of Oxford Nanopore technology for reference-free transcriptome analysis.
        Nat Commun. 2021; 12: 2
        • Sheka D.
        • Alabi N.
        • Gordon P.M.K.
        Oxford nanopore sequencing in clinical microbiology and infection diagnostics.
        Brief Bioinform. 2021; (bbaa403)https://doi.org/10.1093/bib/bbaa403
        • Petersen L.M.
        • Martin I.W.
        • Moschetti W.E.
        • et al.
        Third-generation sequencing in the clinical laboratory: exploring the advantages and challenges of nanopore sequencing.
        J Clin Microbiol. 2020; 58e: 01315-01319
        • Schmidt K.
        • Mwaigwisya S.
        • Crossman L.C.
        • et al.
        Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing.
        J Antimicrob Chemother. 2017; 72: 104-114
        • Loose M.
        • Malla S.
        • Stout M.
        Real-time selective sequencing using nanopore technology.
        Nat Methods. 2016; 13: 751-754
        • Kovaka S.
        • Fan Y.
        • Ni B.
        • et al.
        Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED.
        Nat Biotechnol. 2021; 39: 431-441
        • Lewandowski K.
        • Xu Y.
        • Pullan S.T.
        • et al.
        Metagenomic nanopore sequencing of influenza virus direct from clinical respiratory samples.
        J Clin Microbiol. 2019; 58 (e00963-19)
        • Lemon J.K.
        • Khil P.P.
        • Frank K.M.
        • et al.
        Rapid nanopore sequencing of plasmids and resistance gene detection in clinical isolates.
        J Clin Microbiol. 2017; 55: 3530-3543
        • Sanabria A.
        • Hjerde E.
        • Johannessen M.
        • et al.
        Shotgun-metagenomics on positive blood culture bottles inoculated with prosthetic joint tissue: a proof of concept study.
        Front Microbiol. 2020; 11: 1687
        • Sanderson N.D.
        • Street T.L.
        • Foster D.
        • et al.
        Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices.
        BMC Genomics. 2018; 19: 714
        • Wang C. xin
        • Huang Z.
        • Fang W.
        • et al.
        Preliminary assessment of nanopore-based metagenomic sequencing for the diagnosis of prosthetic joint infection.
        Int J Infect Dis. 2020; 97: 54-59