Cell-free Nucleic Acids in Cancer

Current Approaches, Challenges, and Future Directions
Published:September 01, 2021DOI:https://doi.org/10.1016/j.yamp.2021.07.007
      Tumors shed fragmented DNA and nucleic acids into the blood, generally during apoptosis.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Advances in Molecular Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American College of Obstetrics and Gynecologists' Committee on Practices: Bulletins-Obstetrics, American College of Obstetrics and Gynecologists' Committee on Genetics, Society of Maternal-fetal Medicine
        Screening for Fetal Chromosomal Abnormalities: ACOG Practice Bulletin, Number 226.
        Obstet Gynecol. 2020; 136: e48-e69
        • Lo Y.M.
        • Corbetta N.
        • Chamberlain P.F.
        • et al.
        Presence of fetal DNA in maternal plasma and serum.
        Lancet. 1997; 350: 485-487
        • Bronkhorst A.J.
        • Ungerer V.
        • Holdenrieder S.
        The emerging role of cell-free DNA as a molecular marker for cancer management.
        Biomol Detect Quantif. 2019; 17: 100087
        • Snyder M.W.
        • Kircher M.
        • Hill A.J.
        • et al.
        Cell-free DNA Comprises an In Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin.
        Cell. 2016; 164: 57-68
        • Bettegowda C.
        • Sausen M.
        • Leary R.J.
        • et al.
        Detection of circulating tumor DNA in early- and late-stage human malignancies.
        Sci Transl Med. 2014; 6: 224ra224
        • Bronkhorst A.J.
        • Ungerer V.
        • Holdenrieder S.
        Comparison of methods for the isolation of cell-free DNA from cell culture supernatant.
        Tumour Biol. 2020; 42 (1010428320916314)
        • Ungerer V.
        • Bronkhorst A.J.
        • Holdenrieder S.
        Preanalytical variables that affect the outcome of cell-free DNA measurements.
        Crit Rev Clin Lab Sci. 2020; 57: 484-507
        • Fettke H.
        • Kwan E.M.
        • Azad A.A.
        Cell-free DNA in cancer: current insights.
        Cell Oncol. 2019; 42: 13-28
        • Peng M.
        • Chen C.
        • Hulbert A.
        • et al.
        Non-blood circulating tumor DNA detection in cancer.
        Oncotarget. 2017; 8: 69162-69173
        • Lampignano R.
        • Kloten V.
        • Krahn T.
        • et al.
        Integrating circulating miRNA analysis in the clinical management of lung cancer: Present or future?.
        Mol Aspects Med. 2020; 72: 100844
        • Schneegans S.
        • Luck L.
        • Besler K.
        • et al.
        Pre-analytical factors affecting the establishment of a single tube assay for multiparameter liquid biopsy detection in melanoma patients.
        Mol Oncol. 2020; 14: 1001-1015
        • Greytak S.R.
        • Engel K.B.
        • Parpart-Li S.
        • et al.
        Harmonizing Cell-Free DNA Collection and Processing Practices through Evidence-Based Guidance.
        Clin Cancer Res. 2020; 26: 3104-3109
        • Sorber L.
        • Zwaenepoel K.
        • Jacobs J.
        • et al.
        Specialized Blood Collection Tubes for Liquid Biopsy: Improving the Pre-analytical Conditions.
        Mol Diagn Ther. 2020; 24: 113-124
        • van Dessel L.F.
        • Beije N.
        • Helmijr J.C.
        • et al.
        Application of circulating tumor DNA in prospective clinical oncology trials - standardization of preanalytical conditions.
        Mol Oncol. 2017; 11: 295-304
        • van Dessel L.F.
        • Martens J.W.M.
        • Lolkema M.P.
        Fundamentals of liquid biopsies in metastatic prostate cancer: from characterization to stratification.
        Curr Opin Oncol. 2020; 32: 527-534
        • Risberg B.
        • Tsui D.W.Y.
        • Biggs H.
        • et al.
        Effects of Collection and Processing Procedures on Plasma Circulating Cell-Free DNA from Cancer Patients.
        J Mol Diagn. 2018; 20: 883-892
        • Bronkhorst A.J.
        • Ungerer V.
        • Holdenrieder S.
        Early detection of cancer using circulating tumor DNA: biological, physiological and analytical considerations.
        Crit Rev Clin Lab Sci. 2019; : 1-17
        • Alborelli I.
        • Generali D.
        • Jermann P.
        • et al.
        Cell-free DNA analysis in healthy individuals by next-generation sequencing: a proof of concept and technical validation study.
        Cell Death Dis. 2019; 10: 534
        • de Kock R.
        • Deiman B.
        • Kraaijvanger R.
        • et al.
        Optimized (Pre) Analytical Conditions and Workflow for Droplet Digital PCR Analysis of Cell-Free DNA from Patients with Suspected Lung Carcinoma.
        J Mol Diagn. 2019; 21: 895-902
        • Barrett A.N.
        • Thadani H.A.
        • Laureano-Asibal C.
        • et al.
        Stability of cell-free DNA from maternal plasma isolated following a single centrifugation step.
        Prenat Diagn. 2014; 34: 1283-1288
        • Cavallone L.
        • Aldamry M.
        • Lafleur J.
        • et al.
        A Study of Pre-Analytical Variables and Optimization of Extraction Method for Circulating Tumor DNA Measurements by Digital Droplet PCR.
        Cancer Epidemiol Biomarkers Prev. 2019; 28: 909-916
        • Swinkels D.W.
        • Wiegerinck E.
        • Steegers E.A.
        • et al.
        Effects of blood-processing protocols on cell-free DNA quantification in plasma.
        Clin Chem. 2003; 49: 525-526
        • Beije N.
        • Martens J.W.M.
        • Sleijfer S.
        Incorporating liquid biopsies into treatment decision-making: obstacles and possibilities.
        Drug Discov Today. 2019; 24: 1715-1719
        • van Dessel L.F.
        • Vitale S.R.
        • Helmijr J.C.A.
        • et al.
        High-throughput isolation of circulating tumor DNA: a comparison of automated platforms.
        Mol Oncol. 2019; 13: 392-402
        • Diefenbach R.J.
        • Lee J.H.
        • Kefford R.F.
        • et al.
        Evaluation of commercial kits for purification of circulating free DNA.
        Cancer Genet. 2018; 228-229: 21-27
        • Diaz Jr., L.A.
        • Bardelli A.
        Liquid biopsies: genotyping circulating tumor DNA.
        J Clin Oncol. 2014; 32: 579-586
        • Heitzer E.
        • Haque I.S.
        • Roberts C.E.S.
        • et al.
        Current and future perspectives of liquid biopsies in genomics-driven oncology.
        Nat Rev Genet. 2019; 20: 71-88
        • Elazezy M.
        • Joosse S.A.
        Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management.
        Comput Struct Biotechnol J. 2018; 16: 370-378
        • Hindson B.J.
        • Ness K.D.
        • Masquelier D.A.
        • et al.
        High-throughput droplet digital PCR system for absolute quantitation of DNA copy number.
        Anal Chem. 2011; 83: 8604-8610
        • Chaudhuri A.A.
        • Chabon J.J.
        • Lovejoy A.F.
        • et al.
        Early Detection of Molecular Residual Disease in Localized Lung Cancer by Circulating Tumor DNA Profiling.
        Cancer Discov. 2017; 7: 1394-1403
        • Newman A.M.
        • Bratman S.V.
        • To J.
        • et al.
        An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage.
        Nat Med. 2014; 20: 548-554
        • Newman A.M.
        • Lovejoy A.F.
        • Klass D.M.
        • et al.
        Integrated digital error suppression for improved detection of circulating tumor DNA.
        Nat Biotechnol. 2016; 34: 547-555
        • Phallen J.
        • Sausen M.
        • Adleff V.
        • et al.
        Direct detection of early-stage cancers using circulating tumor DNA.
        Sci Transl Med. 2017; 9: eaan2415
        • Abbosh C.
        • Birkbak N.J.
        • Swanton C.
        Early stage NSCLC - challenges to implementing ctDNA-based screening and MRD detection.
        Nat Rev Clin Oncol. 2018; 15: 577-586
        • Forshew T.
        • Murtaza M.
        • Parkinson C.
        • et al.
        Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA.
        Sci Transl Med. 2012; 4: 136ra168
        • Cohen J.D.
        • Li L.
        • Wang Y.
        • et al.
        Detection and localization of surgically resectable cancers with a multi-analyte blood test.
        Science. 2018; 359: 926-930
        • Guo S.
        • Diep D.
        • Plongthongkum N.
        • et al.
        Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA.
        Nat Genet. 2017; 49: 635-642
        • Zeng H.
        • He B.
        • Yi C.
        • et al.
        Liquid biopsies: DNA methylation analyses in circulating cell-free DNA.
        J Genet Genomics. 2018; 45: 185-192
        • Legendre C.
        • Gooden G.C.
        • Johnson K.
        • et al.
        Whole-genome bisulfite sequencing of cell-free DNA identifies signature associated with metastatic breast cancer.
        Clin Epigenet. 2015; 7: 100
        • Wen L.
        • Li J.
        • Guo H.
        • et al.
        Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients.
        Cell Res. 2015; 25: 1250-1264
        • Liu M.C.
        • Oxnard G.R.
        • Klein E.A.
        • et al.
        Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA.
        Ann Oncol. 2020; 31: 745-759
        • He F.C.
        • Meng W.W.
        • Qu Y.H.
        • et al.
        Expression of circulating microRNA-20a and let-7a in esophageal squamous cell carcinoma.
        World J Gastroenterol. 2015; 21: 4660-4665
        • Lan H.
        • Lu H.
        • Wang X.
        • et al.
        MicroRNAs as potential biomarkers in cancer: opportunities and challenges.
        Biomed Res Int. 2015; 2015: 125094
        • Markou A.
        • Liang Y.
        • Lianidou E.
        Prognostic, therapeutic and diagnostic potential of microRNAs in non-small cell lung cancer.
        Clin Chem Lab Med. 2011; 49: 1591-1603
        • de Planell-Saguer M.
        • Rodicio M.C.
        Detection methods for microRNAs in clinic practice.
        Clin Biochem. 2013; 46: 869-878
      1. Detecting Cancers Earlier Through Elective Plasma-based CancerSEEK Testing (ASCEND).
        (Available at:)
        https://clinicaltrials.gov/ct2/show/NCT04213326
        Date: 2021
        Date accessed: April 28, 2021
        • Ignatiadis M.
        • Sledge G.W.
        • Jeffrey S.S.
        Liquid biopsy enters the clinic - implementation issues and future challenges.
        Nat Rev Clin Oncol. 2021; 18: 297-312
        • Kalinich M.
        • Haber D.A.
        Cancer detection: Seeking signals in blood.
        Science. 2018; 359: 866-867
        • Liu M.C.
        Transforming the landscape of early cancer detection using blood tests-Commentary on current methodologies and future prospects.
        Br J Cancer. 2021; 124: 1475-1477
        • Lennon A.M.
        • Buchanan A.H.
        • Kinde I.
        • et al.
        Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention.
        Science. 2020; : 369
        • GRAIL Clinical Research Program
        (Available at:)
        https://grail.com/clinical-studies/
        Date: 2020
        Date accessed: April 28, 2001
        • Cristiano S.
        • Leal A.
        • Phallen J.
        • et al.
        Genome-wide cell-free DNA fragmentation in patients with cancer.
        Nature. 2019; 570: 385-389
        • Potter N.T.
        • Hurban P.
        • White M.N.
        • et al.
        Validation of a real-time PCR-based qualitative assay for the detection of methylated SEPT9 DNA in human plasma.
        Clin Chem. 2014; 60: 1183-1191
        • Chabon J.J.
        • Hamilton E.G.
        • Kurtz D.M.
        • et al.
        Integrating genomic features for non-invasive early lung cancer detection.
        Nature. 2020; 580: 245-251
        • Network NCC
        NCCN Guidelines Non-Small Cell Lung Cancer v4.2021.
        (Available at:)
        • Malapelle U.
        • Sirera R.
        • Jantus-Lewintre E.
        • et al.
        Profile of the Roche cobas(R) EGFR mutation test v2 for non-small cell lung cancer.
        Expert Rev Mol Diagn. 2017; 17: 209-215
        • Aggarwal C.
        • Rolfo C.D.
        • Oxnard G.R.
        • et al.
        Strategies for the successful implementation of plasma-based NSCLC genotyping in clinical practice.
        Nat Rev Clin Oncol. 2021; 18: 56-62
        • Leighl N.B.
        • Page R.D.
        • Raymond V.M.
        • et al.
        Clinical Utility of Comprehensive Cell-free DNA Analysis to Identify Genomic Biomarkers in Patients with Newly Diagnosed Metastatic Non-small Cell Lung Cancer.
        Clin Cancer Res. 2019; 25: 4691-4700
        • Andre F.
        • Ciruelos E.
        • Rubovszky G.
        • et al.
        Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer.
        N Engl J Med. 2019; 380: 1929-1940
        • Teyssonneau D.
        • Margot H.
        • Cabart M.
        • et al.
        Prostate cancer and PARP inhibitors: progress and challenges.
        J Hematol Oncol. 2021; 14: 51
        • Garcia-Murillas I.
        • Schiavon G.
        • Weigelt B.
        • et al.
        Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer.
        Sci Transl Med. 2015; 7: 302ra133
        • Garcia-Murillas I.
        • Chopra N.
        • Comino-Mendez I.
        • et al.
        Assessment of Molecular Relapse Detection in Early-Stage Breast Cancer.
        JAMA Oncol. 2019; 5: 1473-1478
        • Abbosh C.
        • Birkbak N.J.
        • Wilson G.A.
        • et al.
        Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.
        Nature. 2017; 545: 446-451
        • Christensen E.
        • Birkenkamp-Demtroder K.
        • Sethi H.
        • et al.
        Early Detection of Metastatic Relapse and Monitoring of Therapeutic Efficacy by Ultra-Deep Sequencing of Plasma Cell-Free DNA in Patients With Urothelial Bladder Carcinoma.
        J Clin Oncol. 2019; 37: 1547-1557
        • Coombes R.C.
        • Page K.
        • Salari R.
        • et al.
        Personalized Detection of Circulating Tumor DNA Antedates Breast Cancer Metastatic Recurrence.
        Clin Cancer Res. 2019; 25: 4255-4263
        • Bratman S.V.
        • Yang S.Y.C.
        • Iafolla M.A.J.
        • et al.
        Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab.
        Nat Cancer. 2020; 1: 873-881
        • Parikh A.R.
        • Leshchiner I.
        • Elagina L.
        • et al.
        Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers.
        Nat Med. 2019; 25: 1415-1421
        • Cavallone L.
        • Aguilar-Mahecha A.
        • Lafleur J.
        • et al.
        Prognostic and predictive value of circulating tumor DNA during neoadjuvant chemotherapy for triple negative breast cancer.
        Sci Rep. 2020; 10: 14704
        • Steensma D.P.
        • Bejar R.
        • Jaiswal S.
        • et al.
        Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes.
        Blood. 2015; 126: 9-16
        • Jaiswal S.
        • Fontanillas P.
        • Flannick J.
        • et al.
        Age-related clonal hematopoiesis associated with adverse outcomes.
        N Engl J Med. 2014; 371: 2488-2498
        • Jaiswal S.
        • Natarajan P.
        • Silver A.J.
        • et al.
        Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease.
        N Engl J Med. 2017; 377: 111-121
        • Gondek L.P.
        • DeZern A.E.
        Assessing clonal haematopoiesis: clinical burdens and benefits of diagnosing myelodysplastic syndrome precursor states.
        Lancet Haematol. 2020; 7: e73-e81
        • Zhang W.
        • Xu J.
        DNA methyltransferases and their roles in tumorigenesis.
        Biol Res. 2017; 5: 1
        • Kuderer N.M.
        • Burton K.A.
        • Blau S.
        • et al.
        Comparison of 2 Commercially Available Next-Generation Sequencing Platforms in Oncology.
        JAMA Oncol. 2017; 3: 996-998
        • Stetson D.
        • Ahmed A.
        • Xu X.
        • et al.
        Orthogonal Comparison of Four Plasma NGS Tests With Tumor Suggests Technical Factors are a Major Source of Assay Discordance.
        JCO Precision Oncol. 2019; : 1-9
        • Godsey J.H.
        • Silvestro A.
        • Barrett J.C.
        • et al.
        Generic Protocols for the Analytical Validation of Next-Generation Sequencing-Based ctDNA Assays: A Joint Consensus Recommendation of the BloodPAC's Analytical Variables Working Group.
        Clin Chem. 2020; 66: 1156-1166
        • IJzerman M.J.
        • de Boer J.
        • Azad A.
        • et al.
        Towards Routine Implementation of Liquid Biopsies in Cancer Management: It Is Always Too Early, until Suddenly It Is Too Late.
        Diagnostics. 2021; 11: 103
        • Merker J.D.
        • Oxnard G.R.
        • Compton C.
        • et al.
        Circulating Tumor DNA Analysis in Patients With Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review.
        J Clin Oncol. 2018; 36: 1631-1641
        • Weber S.
        • Spiegl B.
        • Perakis S.O.
        • et al.
        Technical Evaluation of Commercial Mutation Analysis Platforms and Reference Materials for Liquid Biopsy Profiling.
        Cancers (Basel). 2020; 12
        • Connors D.
        • Allen J.
        • Alvarez J.D.
        • et al.
        International liquid biopsy standardization alliance white paper.
        Crit Rev Oncol Hematol. 2020; 156: 103112
        • Verma S.
        • Moore M.W.
        • Ringler R.
        • et al.
        Analytical performance evaluation of a commercial next generation sequencing liquid biopsy platform using plasma ctDNA, reference standards, and synthetic serial dilution samples derived from normal plasma.
        BMC Cancer. 2020; 20: 945
        • Fettke H.
        • Steen J.A.
        • Kwan E.M.
        • et al.
        Analytical validation of an error-corrected ultra-sensitive ctDNA next-generation sequencing assay.
        BioTechniques. 2020; 69: 133-140
        • Johansson G.
        • Andersson D.
        • Filges S.
        • et al.
        Considerations and quality controls when analyzing cell-free tumor DNA.
        Biomol Detect Quantif. 2019; 17: 100078
        • Yu Q.
        • Huang F.
        • Zhang M.
        • et al.
        Multiplex picoliter-droplet digital PCR for quantitative assessment of EGFR mutations in circulating cell-free DNA derived from advanced non-small cell lung cancer patients.
        Mol Med Rep. 2017; 16: 1157-1166
        • Douglas M.P.
        • Gray S.W.
        • Phillips K.A.
        Private Payer and Medicare Coverage for Circulating Tumor DNA Testing: A Historical Analysis of Coverage Policies From 2015 to 2019.
        J Natl Compr Canc Netw. 2020; 18: 866-872
        • Sanchez-Calderon D.
        • Pedraza A.
        • Mancera Urrego C.
        • et al.
        Analysis of the Cost-Effectiveness of Liquid Biopsy to Determine Treatment Change in Patients with Her2-Positive Advanced Breast Cancer in Colombia.
        Clin Outcomes Res. 2020; 12: 115-122
        • Mandel P.
        • Metais P.
        Nuclear Acids In Human Blood Plasma.
        C R Seances Soc Biol Fil. 1948; 142: 241-243