Next-Generation Sequencing for Measurable Residual Disease Assessment in Acute Leukemia

      Minimal residual disease, or measurable residual disease (MRD), is a strong independent adverse prognostic factor in acute leukemia and is now an essential component of standard-of-care post-therapeutic monitoring.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Advances in Molecular Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alikian M.
        • Gale R.P.
        • Apperley J.F.
        • et al.
        Molecular techniques for the personalised management of patients with chronic myeloid leukaemia.
        Biomol Detect Quantif. 2017; 11: 4-20
        • Laczika K.
        • Mitterbauer G.
        • Korninger L.
        • et al.
        Rapid achievement of PML-RAR alpha polymerase chain reaction (PCR)-negativity by combined treatment with all-trans-retinoic acid and chemotherapy in acute promyelocytic leukemia: a pilot study.
        Leukemia. 1994; 8: 1-5
        • Takatsuki H.
        • Umemura T.
        • Sadamura S.
        • et al.
        Detection of minimal residual disease by reverse transcriptase polymerase chain reaction for the PML/RAR alpha fusion mRNA: a study in patients with acute promyelocytic leukemia following peripheral stem cell transplantation.
        Leukemia. 1995; 9: 889-892
        • Grimwade D.
        The significance of minimal residual disease in patients with t(15;17).
        Best Pract Res Clin Haematol. 2002; 15: 137-158
        • Ito Y.
        • Miyamura K.
        Clinical significance of minimal residual disease in leukemia detected by polymerase chain reaction: is molecular remission a milestone for achieving a cure?.
        Leuk Lymphoma. 1994; 16: 57-64
        • van Dongen J.J.
        • Breit T.M.
        • Adriaansen H.J.
        • et al.
        Detection of minimal residual disease in acute leukemia by immunological marker analysis and polymerase chain reaction.
        Leukemia. 1992; 6: 47-59
        • Jacquy C.
        • Delepaut B.
        • Van Daele S.
        • et al.
        A prospective study of minimal residual disease in childhood B-lineage acute lymphoblastic leukaemia: MRD level at the end of induction is a strong predictive factor of relapse.
        Br J Haematol. 1997; 98: 140-146
        • Krauter J.
        • Gorlich K.
        • Ottmann O.
        • et al.
        Prognostic value of minimal residual disease quantification by real-time reverse transcriptase polymerase chain reaction in patients with core binding factor leukemias.
        J Clin Oncol. 2003; 21: 4413-4422
        • van Dongen J.J.
        • Macintyre E.A.
        • Gabert J.A.
        • et al.
        Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia.
        Leukemia. 1999; 13: 1901-1928
        • Miyamura K.
        • Tanimoto M.
        • Morishima Y.
        • et al.
        Detection of Philadelphia chromosome-positive acute lymphoblastic leukemia by polymerase chain reaction: possible eradication of minimal residual disease by marrow transplantation.
        Blood. 1992; 79: 1366-1370
      1. National comprehensive cancer network clinical practice guidelines in Oncology (NCCN guidelines): acute lymphoblastic leukemia. NCCN, 2020
        • Brown P.A.
        • Wieduwilt M.
        • Logan A.
        • et al.
        Guidelines Insights: Acute Lymphoblastic Leukemia, Version 1.2019.
        J Natl Compr Canc Netw. 2019; 17: 414-423
        • Brown P.
        • Inaba H.
        • Annesley C.
        • et al.
        Pediatric Acute Lymphoblastic Leukemia, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology.
        J Natl Compr Canc Netw. 2020; 18: 81-112
        • Ossenkoppele G.
        • Schuurhuis G.J.
        MRD in AML: does it already guide therapy decision-making?.
        Hematol Am Soc Hematol Educ Program. 2016; 2016: 356-365
        • Ossenkoppele G.
        • Schuurhuis G.J.
        • van de Loosdrecht A.
        • et al.
        Can we incorporate MRD assessment into clinical practice in AML?.
        Best Pract Res Clin Haematol. 2019; 32: 186-191
        • Schuurhuis G.J.
        • Heuser M.
        • Freeman S.
        • et al.
        Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party.
        Blood. 2018; 131: 1275-1291
        • Pollyea D.A.
        • Bixby D.
        • Perl A.
        • et al.
        NCCN Guidelines Insights: Acute Myeloid Leukemia, Version 2.2021.
        J Natl Compr Canc Netw. 2021; 19: 16-27
        • Campana D.
        • Leung W.
        Clinical significance of minimal residual disease in patients with acute leukaemia undergoing haematopoietic stem cell transplantation.
        Br J Haematol. 2013; 162: 147-161
        • Cloos J.
        • Ossenkoppele G.J.
        • Dillon R.
        Minimal residual disease and stem cell transplantation outcomes.
        Hematol Am Soc Hematol Educ Program. 2019; 2019: 617-625
        • Nagler A.
        • Baron F.
        • Labopin M.
        • et al.
        Measurable residual disease (MRD) testing for acute leukemia in EBMT transplant centers: a survey on behalf of the ALWP of the EBMT.
        Bone Marrow Transpl. 2021; 96: 218-224
      2. BLAST MRD AML-2: BLockade of PD-1 added to standard therapy to target measurable residual disease in acute myeloid leukemia 2- a randomized phase 2 study of anti-PD-1 pembrolizumab in combination with azacitidine and venetoclax as frontline therapy in unfit patients with acute myeloid leukemia.
        (Availble at:) (Accessed March 12, 2021)
        • Berry D.A.
        • Zhou S.
        • Higley H.
        • et al.
        Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis.
        JAMA Oncol. 2017; 3: e170580
        • Pulsipher M.A.
        • Bader P.
        • Klingebiel T.
        • et al.
        Allogeneic transplantation for pediatric acute lymphoblastic leukemia: the emerging role of peritransplantation minimal residual disease/chimerism monitoring and novel chemotherapeutic, molecular, and immune approaches aimed at preventing relapse.
        Biol Blood Marrow Transpl. 2009; 15: 62-71
        • Pulsipher M.A.
        • Carlson C.
        • Langholz B.
        • et al.
        IgH-V(D)J NGS-MRD measurement pre- and early post-allotransplant defines very low- and very high-risk ALL patients.
        Blood. 2015; 125: 3501-3508
        • Hantel A.
        • Stock W.
        • Kosuri S.
        Molecular minimal residual disease testing in acute myeloid leukemia: a review for the practicing clinician.
        Clin Lymphoma Myeloma Leuk. 2018; 18: 636-647
        • Othus M.
        • Wood B.L.
        • Stirewalt D.L.
        • et al.
        Effect of measurable ('minimal') residual disease (MRD) information on prediction of relapse and survival in adult acute myeloid leukemia.
        Leukemia. 2016; 30: 2080-2083
        • Coustan-Smith E.
        • Campana D.
        Should evaluation for minimal residual disease be routine in acute myeloid leukemia?.
        Curr Opin Hematol. 2013; 20: 86-92
        • Papaemmanuil E.
        • Dohner H.
        • Campbell P.J.
        Genomic classification in acute myeloid leukemia.
        N Engl J Med. 2016; 375: 900-901
        • Arber D.A.
        • Brunning R.D.
        • Le Beau M.M.
        • et al.
        Acute myeloid leukaemia with recurrent genetic abnormalities.
        in: Swerdlow S.H. Harris N.L. Jaffe E.S. World health organization (WHO) classification of tumuors of haematopoietic and lymphoid tissues. 4th edition. International Agency for Research on Cancer, Lyon2017
        • Theunissen P.M.J.
        • de Bie M.
        • van Zessen D.
        • et al.
        Next-generation antigen receptor sequencing of paired diagnosis and relapse samples of B-cell acute lymphoblastic leukemia: clonal evolution and implications for minimal residual disease target selection.
        Leuk Res. 2019; 76: 98-104
        • Hasserjian R.P.
        • Steensma D.P.
        • Graubert T.A.
        • et al.
        Clonal hematopoiesis and measurable residual disease assessment in acute myeloid leukemia.
        Blood. 2020; 135: 1729-1738
        • Jaiswal S.
        • Fontanillas P.
        • Flannick J.
        • et al.
        Age-related clonal hematopoiesis associated with adverse outcomes.
        N Engl J Med. 2014; 371: 2488-2498
        • Kayser S.
        • Walter R.B.
        • Stock W.
        • et al.
        Minimal residual disease in acute myeloid leukemia--current status and future perspectives.
        Curr Hematol Malig Rep. 2015; 10: 132-144
        • Wu D.
        • Emerson R.O.
        • Sherwood A.
        • et al.
        Detection of minimal residual disease in B lymphoblastic leukemia by high-throughput sequencing of IGH.
        Clin Cancer Res. 2014; 20: 4540-4548
        • Kotrova M.
        • Trka J.
        • Kneba M.
        • et al.
        Is next-generation sequencing the way to go for residual disease monitoring in acute lymphoblastic leukemia?.
        Mol Diagn Ther. 2017; 21: 481-492
        • Borowitz M.J.
        • Wood B.L.
        • Devidas M.
        • et al.
        Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children's Oncology Group study AALL0232.
        Blood. 2015; 126: 964-971
        • Borowitz M.J.
        • Pullen D.J.
        • Shuster J.J.
        • et al.
        Minimal residual disease detection in childhood precursor-B-cell acute lymphoblastic leukemia: relation to other risk factors. A Children's Oncology Group study.
        Leukemia. 2003; 17: 1566-1572
        • Brüggemann M.
        • Kotrová M.
        • Knecht H.
        • et al.
        Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study.
        Leukemia. 2019; 33: 2241-2253
        • Langerak A.W.
        • Groenen P.J.
        • Bruggemann M.
        • et al.
        EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations.
        Leukemia. 2012; 26: 2159-2171
        • Scheijen B.
        • Meijers R.W.J.
        • Rijntjes J.
        • et al.
        Next-generation sequencing of immunoglobulin gene rearrangements for clonality assessment: a technical feasibility study by EuroClonality-NGS.
        Leukemia. 2019; 33: 2227-2240
        • van Dongen J.J.
        • Langerak A.W.
        • Bruggemann M.
        • et al.
        Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936.
        Leukemia. 2003; 17: 2257-2317
        • Rucker F.G.
        • Agrawal M.
        • Corbacioglu A.
        • et al.
        Measurable residual disease monitoring in acute myeloid leukemia with t(8;21)(q22;q22.1): results from the AML Study Group.
        Blood. 2019; 134: 1608-1618
        • Yin J.A.
        • Frost L.
        Monitoring AML1-ETO and CBFbeta-MYH11 transcripts in acute myeloid leukemia.
        Curr Oncol Rep. 2003; 5: 399-404
        • Stentoft J.
        • Hokland P.
        • Ostergaard M.
        • et al.
        Minimal residual core binding factor AMLs by real time quantitative PCR--initial response to chemotherapy predicts event free survival and close monitoring of peripheral blood unravels the kinetics of relapse.
        Leuk Res. 2006; 30: 389-395
        • Barragan E.
        • Pajuelo J.C.
        • Ballester S.
        • et al.
        Minimal residual disease detection in acute myeloid leukemia by mutant nucleophosmin (NPM1): comparison with WT1 gene expression.
        Clin Chim Acta. 2008; 395: 120-123
        • Bacher U.
        • Badbaran A.
        • Fehse B.
        • et al.
        Quantitative monitoring of NPM1 mutations provides a valid minimal residual disease parameter following allogeneic stem cell transplantation.
        Exp Hematol. 2009; 37: 135-142
        • Papadaki C.
        • Dufour A.
        • Seibl M.
        • et al.
        Monitoring minimal residual disease in acute myeloid leukaemia with NPM1 mutations by quantitative PCR: clonal evolution is a limiting factor.
        Br J Haematol. 2009; 144: 517-523
        • Dvorakova D.
        • Racil Z.
        • Jeziskova I.
        • et al.
        Monitoring of minimal residual disease in acute myeloid leukemia with frequent and rare patient-specific NPM1 mutations.
        Am J Hematol. 2010; 85: 926-929
        • Pettersson L.
        • Leveen P.
        • Axler O.
        • et al.
        Improved minimal residual disease detection by targeted quantitative polymerase chain reaction in Nucleophosmin 1 type a mutated acute myeloid leukemia.
        Genes Chromosomes Cancer. 2016; 55: 750-766
        • Salipante S.J.
        • Fromm J.R.
        • Shendure J.
        • et al.
        Detection of minimal residual disease in NPM1-mutated acute myeloid leukemia by next-generation sequencing.
        Mod Pathol. 2014; 27: 1438-1446
        • Gabert J.
        • Beillard E.
        • van der Velden V.H.
        • et al.
        Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program.
        Leukemia. 2003; 17: 2318-2357
        • Goodwin S.
        • McPherson J.D.
        • McCombie W.R.
        Coming of age: ten years of next-generation sequencing technologies.
        Nat Rev Genet. 2016; 17: 333-351
        • Reuter J.A.
        • Spacek D.V.
        • Snyder M.P.
        High-throughput sequencing technologies.
        Mol Cell. 2015; 58: 586-597
        • Sims D.
        • Sudbery I.
        • Ilott N.E.
        • et al.
        Sequencing depth and coverage: key considerations in genomic analyses.
        Nat Rev Genet. 2014; 15: 121-132
        • Yohe S.
        • Thyagarajan B.
        Review of clinical next-generation sequencing.
        Arch Pathol Lab Med. 2017; 141: 1544-1557
        • Behjati S.
        • Tarpey P.S.
        What is next generation sequencing?.
        Arch Dis Child Educ Pract Ed. 2013; 98: 236-238
        • Salk J.J.
        • Schmitt M.W.
        • Loeb L.A.
        Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations.
        Nat Rev Genet. 2018; 19: 269-285
        • Cavagna R.
        • Guinea Montalvo M.L.
        • Tosi M.
        • et al.
        Capture-based next-generation sequencing improves the identification of immunoglobulin/T-cell receptor clonal markers and gene mutations in adult acute lymphoblastic leukemia patients lacking molecular probes.
        Cancers (Basel). 2020; 12: 1505
        • Ritterhouse L.L.
        • Parilla M.
        • Zhen C.J.
        • et al.
        Clinical validation and implementation of a measurable residual disease assay for NPM1 in acute myeloid leukemia by error-corrected next-generation sequencing.
        Mol Diagn Ther. 2019; 23: 791-802
        • Balagopal V.
        • Hantel A.
        • Kadri S.
        • et al.
        Measurable residual disease monitoring for patients with acute myeloid leukemia following hematopoietic cell transplantation using error corrected hybrid capture next generation sequencing.
        PLoS One. 2019; 14: e0224097
        • Kennedy S.R.
        • Schmitt M.W.
        • Fox E.J.
        • et al.
        Detecting ultralow-frequency mutations by Duplex Sequencing.
        Nat Protoc. 2014; 9: 2586-2606
        • Hiatt J.B.
        • Pritchard C.C.
        • Salipante S.J.
        • et al.
        Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation.
        Genome Res. 2013; 23: 843-854
        • Gregory M.T.
        • Bertout J.A.
        • Ericson N.G.
        • et al.
        Targeted single molecule mutation detection with massively parallel sequencing.
        Nucleic Acids Res. 2016; 44: e22
        • Kinde I.
        • Wu J.
        • Papadopoulos N.
        • et al.
        Detection and quantification of rare mutations with massively parallel sequencing.
        Proc Natl Acad Sci U S A. 2011; 108: 9530-9535
        • Waalkes A.
        • Penewit K.
        • Wood B.L.
        • et al.
        Ultrasensitive detection of acute myeloid leukemia minimal residual disease using single molecule molecular inversion probes.
        Haematologica. 2017; 102: 1549-1557
        • Dillon L.W.
        • Hayati S.
        • Roloff G.W.
        • et al.
        Targeted RNA-sequencing for the quantification of measurable residual disease in acute myeloid leukemia.
        Haematologica. 2019; 104: 297-304
        • Xu C.
        • Studer A.
        • Chen X.
        • et al.
        Comprehensive evaluation and validation of a next-generation sequencing assay for minimal residual disease detection in T-Lymphoblastic Leukemia/Lymphoma.
        Blood. 2019; 134: 1475
        • Shahkarami S.
        • Mehrasa R.
        • Younesian S.
        • et al.
        Minimal residual disease (MRD) detection using rearrangement of immunoglobulin/T cell receptor genes in adult patients with acute lymphoblastic leukemia (ALL).
        Ann Hematol. 2018; 97: 585-595
        • Ching T.
        • Duncan M.E.
        • Newman-Eerkes T.
        • et al.
        Analytical evaluation of the clonoSEQ Assay for establishing measurable (minimal) residual disease in acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma.
        BMC Cancer. 2020; 20: 612
        • Monter A.
        • Nomdedéu J.F.
        ClonoSEQ assay for the detection of lymphoid malignancies.
        Expert Rev Mol Diagn. 2019; 19: 571-578
        • Ladetto M.
        • Brüggemann M.
        • Monitillo L.
        • et al.
        Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders.
        Leukemia. 2014; 28: 1299-1307
        • Sekiya Y.
        • Xu Y.
        • Muramatsu H.
        • et al.
        Clinical utility of next-generation sequencing-based minimal residual disease in paediatric B-cell acute lymphoblastic leukaemia.
        Br J Haematol. 2017; 176: 248-257
        • Cheng S.
        • Inghirami G.
        • Cheng S.
        • et al.
        Simple deep sequencing-based post-remission MRD surveillance predicts clinical relapse in B-ALL.
        J Hematol Oncol. 2018; 11: 105
        • Wu D.
        • Sherwood A.
        • Fromm J.R.
        • et al.
        High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia.
        Sci Transl Med. 2012; 4: 134ra63
        • Bruggemann M.
        • Kotrova M.
        • Knecht H.
        • et al.
        Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study.
        Leukemia. 2019; 33: 2241-2253
        • Monter A.
        • Nomdedeu J.F.
        ClonoSEQ assay for the detection of lymphoid malignancies.
        Expert Rev Mol Diagn. 2019; 19: 571-578
        • Faham M.
        • Zheng J.
        • Moorhead M.
        • et al.
        Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia.
        Blood. 2012; 120: 5173-5180
        • Theunissen P.
        • Mejstrikova E.
        • Sedek L.
        • et al.
        Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia.
        Blood. 2017; 129: 347-357
        • Della Starza I.
        • De Novi L.A.
        • Nunes V.
        • et al.
        Whole-genome amplification for the detection of molecular targets and minimal residual disease monitoring in acute lymphoblastic leukaemia.
        Br J Haematol. 2014; 165: 341-348
        • Wright G.
        • Watt E.
        • Inglott S.
        • et al.
        Clinical benefit of a high-throughput sequencing approach for minimal residual disease in acute lymphoblastic leukemia.
        Pediatr Blood Cancer. 2019; 66: e27787
        • Reyes-Barron C.
        • Burack W.R.
        • Rothberg P.G.
        • et al.
        Next-Generation Sequencing for Minimal Residual Disease Surveillance in Acute Lymphoblastic Leukemia: An Update.
        Crit Rev Oncog. 2017; 22: 559-567
        • Chen X.
        • Wood B.L.
        How do we measure MRD in ALL and how should measurements affect decisions. Re: Treatment and prognosis?.
        Best Pract Res Clin Haematol. 2017; 30: 237-248
        • McNeer J.L.
        • Rau R.E.
        • Gupta S.
        • et al.
        Cutting to the Front of the Line: Immunotherapy for Childhood Acute Lymphoblastic Leukemia.
        Am Soc Clin Oncol Educ Book. 2020; 40: 1-12
        • Gokbuget N.
        • Dombret H.
        • Bonifacio M.
        • et al.
        Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia.
        Blood. 2018; 131: 1522-1531
        • Kantarjian H.
        • Stein A.
        • Gokbuget N.
        • et al.
        Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia.
        N Engl J Med. 2017; 376: 836-847
        • Jen E.Y.
        • Xu Q.
        • Schetter A.
        • et al.
        FDA approval: blinatumomab for patients with B-cell precursor acute lymphoblastic leukemia in morphologic remission with minimal residual disease.
        Clin Cancer Res. 2019; 25: 473-477
      3. The EndRAD trial: eliminating total body irradiation (TBI) for NGS-MRD negative children, adolescents, and young adults with B-ALL.
        (Availble at:) (Accessed March 14, 2021)
        • Langebrake C.
        • Creutzig U.
        • Dworzak M.
        • et al.
        • Group M-A-BS
        Residual disease monitoring in childhood acute myeloid leukemia by multiparameter flow cytometry: the MRD-AML-BFM Study Group.
        J Clin Oncol. 2006; 24: 3686-3692
        • Novakova M.
        • Zaliova M.
        • Fiser K.
        • et al.
        DUX4r, ZNF384r and PAX5-P80R mutated B-cell precursor acute lymphoblastic leukemia frequently undergo monocytic switch.
        Haematologica. 2021; 106: 2066-2075
        • Palomero T.
        • Sulis M.L.
        • Cortina M.
        • et al.
        Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia.
        Nat Med. 2007; 13: 1203-1210
        • Paganin M.
        • Grillo M.F.
        • Silvestri D.
        • et al.
        The presence of mutated and deleted PTEN is associated with an increased risk of relapse in childhood T cell acute lymphoblastic leukaemia treated with AIEOP-BFM ALL protocols.
        Br J Haematol. 2018; 182: 705-711
        • Germano G.
        • Valsecchi M.G.
        • Buldini B.
        • et al.
        Next-generation sequencing of PTEN mutations for monitoring minimal residual disease in T-cell acute lymphoblastic leukemia.
        Pediatr Blood Cancer. 2020; 67: e28025
        • Roberts K.G.
        • Pei D.
        • Campana D.
        • et al.
        Outcomes of children with BCR-ABL1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease.
        J Clin Oncol. 2014; 32: 3012-3020
        • Roberts K.G.
        • Reshmi S.C.
        • Harvey R.C.
        • et al.
        Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children's Oncology Group.
        Blood. 2018; 132: 815-824
        • Sherali N.
        • Hamadneh T.
        • Aftab S.
        • et al.
        Integration of next-generation sequencing in diagnosing and minimal residual disease detection in patients with philadelphia chromosome-like acute lymphoblastic leukemia.
        Cureus. 2020; 12: e10696
        • Getta B.M.
        • Devlin S.M.
        • Levine R.L.
        • et al.
        Multicolor flow cytometry and multigene next-generation sequencing are complementary and highly predictive for relapse in acute myeloid leukemia after allogeneic transplantation.
        Biol Blood Marrow Transpl. 2017; 23: 1064-1071
        • Chen X.
        • Wood B.L.
        Monitoring minimal residual disease in acute leukemia: technical challenges and interpretive complexities.
        Blood Rev. 2017; 31: 63-75
        • Zhou Y.
        • Wood B.L.
        Methods of detection of measurable residual disease in AML.
        Curr Hematol Malig Rep. 2017; 12: 557-567
        • Grimwade D.
        • Freeman S.D.
        Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for "prime time"?.
        Hematol Am Soc Hematol Educ Program. 2014; 2014: 222-233
        • Araki D.
        • Wood B.L.
        • Othus M.
        • et al.
        Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: time to move toward a minimal residual disease-based definition of complete remission?.
        J Clin Oncol. 2016; 34: 329-336
        • Shapiro R.M.
        • Kim D.D.H.
        Next-generation sequencing-based minimal residual disease monitoring in patients receiving allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia or myelodysplastic syndrome.
        Curr Opin Hematol. 2018; 25: 425-432
        • Thol F.
        • Gabdoulline R.
        • Liebich A.
        • et al.
        Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML.
        Blood. 2018; 132: 1703-1713
        • Ahn J.S.
        • Kim T.
        • Jung S.H.
        • et al.
        Allogeneic transplant can abrogate the risk of relapse in the patients of first remission acute myeloid leukemia with detectable measurable residual disease by next-generation sequencing.
        Bone Marrow Transpl. 2021; 56: 1159-1170
        • Press R.D.
        • Eickelberg G.
        • Froman A.
        • et al.
        Next-generation sequencing-defined minimal residual disease before stem cell transplantation predicts acute myeloid leukemia relapse.
        Am J Hematol. 2019; 94: 902-912
        • Cloos J.
        • Harris J.R.
        • Janssen J.
        • et al.
        Comprehensive protocol to sample and process bone marrow for measuring measurable residual disease and leukemic stem cells in acute myeloid leukemia.
        J Vis Exp. 2018; 133: 56386
        • Thol F.
        • Kolking B.
        • Damm F.
        • et al.
        Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations.
        Genes Chromosomes Cancer. 2012; 51: 689-695
        • Radich J.P.
        • Zelenetz A.D.
        • Chan W.C.
        • et al.
        NCCN task force report: molecular markers in leukemias and lymphomas.
        J Natl Compr Canc Netw. 2009; 7 ([quiz S5–6]): S1-S34
        • Zhou Y.
        • Othus M.
        • Walter R.B.
        • et al.
        Deep NPM1 sequencing following allogeneic hematopoietic cell transplantation improves risk assessment in adults with NPM1-mutated AML.
        Biol Blood Marrow Transpl. 2018; 24: 1615-1620
        • Patkar N.
        • Kodgule R.
        • Kakirde C.
        • et al.
        Clinical impact of measurable residual disease monitoring by ultradeep next generation sequencing in NPM1 mutated acute myeloid leukemia.
        Oncotarget. 2018; 9: 36613-36624
        • Guolo F.
        • Minetto P.
        • Clavio M.
        • et al.
        Longitudinal minimal residual disease (MRD) evaluation in acute myeloid leukaemia with NPM1 mutation: from definition of molecular relapse to MRD-driven salvage approach.
        Br J Haematol. 2019; 186: e223-e225
        • Forghieri F.
        • Comoli P.
        • Marasca R.
        • et al.
        Minimal/measurable residual disease monitoring in NPM1-mutated acute myeloid leukemia: a clinical viewpoint and perspectives.
        Int J Mol Sci. 2018; 19: 3492
        • Bibault J.E.
        • Figeac M.
        • Helevaut N.
        • et al.
        Next-generation sequencing of FLT3 internal tandem duplications for minimal residual disease monitoring in acute myeloid leukemia.
        Oncotarget. 2015; 6: 22812-22821
        • Dillon R.
        • Potter N.
        • Freeman S.
        • et al.
        How we use molecular minimal residual disease (MRD) testing in acute myeloid leukaemia (AML).
        Br J Haematol. 2021; 193: 231-244
        • Fasan O.
        Using minimal (measurable) residual disease assessments to guide decision-making for timing of allogeneic transplantation in acute myeloid leukemia.
        Curr Opin Hematol. 2019; 26: 413-420
        • Levis M.J.
        • Perl A.E.
        • Altman J.K.
        • et al.
        A next-generation sequencing-based assay for minimal residual disease assessment in AML patients with FLT3-ITD mutations.
        Blood Adv. 2018; 2: 825-831
        • Mardis E.R.
        • Ding L.
        • Dooling D.J.
        • et al.
        Recurring mutations found by sequencing an acute myeloid leukemia genome.
        N Engl J Med. 2009; 361: 1058-1066
        • Welch J.S.
        • Ley T.J.
        • Link D.C.
        • et al.
        The origin and evolution of mutations in acute myeloid leukemia.
        Cell. 2012; 150: 264-278
        • Xie M.
        • Lu C.
        • Wang J.
        • et al.
        Age-related mutations associated with clonal hematopoietic expansion and malignancies.
        Nat Med. 2014; 20: 1472-1478
        • Genovese G.
        • Kahler A.K.
        • Handsaker R.E.
        • et al.
        Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence.
        N Engl J Med. 2014; 371: 2477-2487
        • Steensma D.P.
        • Bejar R.
        • Jaiswal S.
        • et al.
        Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes.
        Blood. 2015; 126: 9-16
        • Buccisano F.
        • Dillon R.
        • Freeman S.D.
        • et al.
        Role of minimal (measurable) residual disease assessment in older patients with acute myeloid leukemia.
        Cancers (Basel). 2018; 10: 215
        • Buccisano F.
        • Maurillo L.
        • Del Principe M.I.
        • et al.
        Minimal residual disease as a biomarker for outcome prediction and therapy optimization in acute myeloid leukemia.
        Expert Rev Hematol. 2018; 11: 307-313
        • Jongen-Lavrencic M.
        • Grob T.
        • Hanekamp D.
        • et al.
        Molecular minimal residual disease in acute myeloid leukemia.
        N Engl J Med. 2018; 378: 1189-1199
        • Farrar J.E.
        • Schuback H.L.
        • Ries R.E.
        • et al.
        Genomic profiling of pediatric acute myeloid leukemia reveals a changing mutational landscape from disease diagnosis to relapse.
        Cancer Res. 2016; 76: 2197-2205
        • Maxson J.E.
        • Ries R.E.
        • Wang Y.C.
        • et al.
        CSF3R mutations have a high degree of overlap with CEBPA mutations in pediatric AML.
        Blood. 2016; 127: 3094-3098
        • Bolouri H.
        • Farrar J.E.
        • Triche Jr., T.
        • et al.
        The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions.
        Nat Med. 2018; 24: 103-112
        • Brunner A.M.
        • Graubert T.A.
        Genomics in childhood acute myeloid leukemia comes of age.
        Nat Med. 2018; 24: 7-9
        • Bruggemann M.
        • Kotrova M.
        Minimal residual disease in adult ALL: technical aspects and implications for correct clinical interpretation.
        Blood Adv. 2017; 1: 2456-2466
        • Li Z.
        • Jiang N.
        • Lim E.H.
        • et al.
        Identifying IGH disease clones for MRD monitoring in childhood B-cell acute lymphoblastic leukemia using RNA-Seq.
        Leukemia. 2020; 34: 2418-2429
        • Sitthi-Amorn J.
        • Herrington B.
        • Megason G.
        • et al.
        Transcriptome analysis of minimal residual disease in subtypes of pediatric B cell acute lymphoblastic leukemia.
        Clin Med Insights Oncol. 2015; 9: 51-60
        • Brambati C.
        • Galbiati S.
        • Xue E.
        • et al.
        Droplet digital polymerase chain reaction for DNMT3A and IDH1/2 mutations to improve early detection of acute myeloid leukemia relapse after allogeneic hematopoietic stem cell transplantation.
        Haematologica. 2016; 101: e157-e161
        • Waterhouse M.
        • Pfeifer D.
        • Duque-Afonso J.
        • et al.
        Droplet digital PCR for the simultaneous analysis of minimal residual disease and hematopoietic chimerism after allogeneic cell transplantation.
        Clin Chem Lab Med. 2019; 57: 641-647
        • Coccaro N.
        • Anelli L.
        • Zagaria A.
        • et al.
        Droplet digital PCR is a robust tool for monitoring minimal residual disease in adult philadelphia-positive acute lymphoblastic leukemia.
        J Mol Diagn. 2018; 20: 474-482
        • Cilloni D.
        • Petiti J.
        • Rosso V.
        • et al.
        Digital PCR in myeloid malignancies: ready to replace quantitative PCR?.
        Int J Mol Sci. 2019; 20: 2249
        • Liu Y.
        • Zhang H.
        • Du Y.
        • et al.
        Highly sensitive minimal residual disease detection by biomimetic multivalent aptamer nanoclimber functionalized microfluidic chip.
        Small. 2020; 16: e2000949
        • Maurillo L.
        • Bassan R.
        • Cascavilla N.
        • et al.
        Quality of Response in acute myeloid leukemia: the Role of minimal residual disease.
        Cancers (Basel). 2019; 11: 1417
        • Coustan-Smith E.
        • Sancho J.
        • Hancock M.L.
        • et al.
        Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia.
        Blood. 2002; 100: 2399-2402
        • Schumich A.
        • Maurer-Granofszky M.
        • Attarbaschi A.
        • et al.
        Flow-cytometric minimal residual disease monitoring in blood predicts relapse risk in pediatric B-cell precursor acute lymphoblastic leukemia in trial AIEOP-BFM-ALL 2000.
        Pediatr Blood Cancer. 2019; 66: e27590
        • Skou A.S.
        • Juul-Dam K.L.
        • Ommen H.B.
        • et al.
        Peripheral blood molecular measurable residual disease is sufficient to identify patients with acute myeloid leukaemia with imminent clinical relapse.
        Br J Haematol. 2021;
        • Kim C.
        • Delaney K.
        • McNamara M.
        • et al.
        Cross-sectional physician survey on the use of minimal residual disease testing in the management of pediatric and adult patients with acute lymphoblastic leukemia.
        Hematology. 2019; 24: 70-78
        • Ni W.
        • Hu B.
        • Zheng C.
        • et al.
        Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine.
        Oncotarget. 2016; 7: 71915-71921