Advertisement
Review Article| Volume 5, ISSUE 1, P51-58, November 2022

Download started.

Ok

Molecular Advances in Nodal Peripheral T-Cell Lymphoma

Published:September 28, 2022DOI:https://doi.org/10.1016/j.yamp.2022.05.002

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Molecular Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Armitage J.O.
        The aggressive peripheral T-cell lymphomas: 2012 update on diagnosis, risk stratification, and management.
        Am J Hematol. 2012; 87: 511-519
        • Vega F.
        • Amador C.
        • Chadburn A.
        • et al.
        Genetic profiling and biomarkers in peripheral T-cell lymphomas: current role in the diagnostic work-up.
        Mod Pathol. 2022; 35: 306-331
        • Swerdlow S.H.
        • Campo E.
        • Pileri S.A.
        • et al.
        The 2016 revision of the World Health Organization classification of lymphoid neoplasms.
        Blood. 2016; 127: 2375-2390
        • Jaffe E.S.
        Pathobiology of peripheral T-cell lymphomas.
        Hematol Am Soc Hematol Educ Program. 2006; : 317-322
        • Jaffe E.S.
        • Campo E.
        • Harris N.L.
        • et al.
        WHO classification of tumours of haematopoietic and lymphoid tissues.
        in: Campo E. Harris N.L. Jaffe E.S. WHO classification of tumors. 4th edition. World Health Organization, Lyon, France2017: 190-198
        • Xie C.
        • Li X.
        • Zeng H.
        • et al.
        Molecular insights into pathogenesis and targeted therapy of peripheral T cell lymphoma.
        Exp Hematol Oncol. 2020; 9: 30
        • Sidorova Y.V.
        • Sychevskaya K.A.
        • Chernova N.G.
        • et al.
        High Incidence of Clonal CD8+ T-cell Proliferation in Non-malignant Conditions May Reduce the Significance of T-cell Clonality Assay for Differential Diagnosis in Oncohematology.
        Clin Lymphoma Myeloma Leuk. 2020; 20: 203-208
        • Sufficool K.E.
        • Lockwood C.M.
        • Abel H.J.
        • et al.
        T-cell clonality assessment by next-generation sequencing improves detection sensitivity in mycosis fungoides.
        J Am Acad Dermatol. 2015; 73: 228-236.e2
        • Vose J.
        • Armitage J.
        • Weisenburger D.
        International T-Cell Lymphoma Project. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes.
        J Clin Oncol. 2008; 26: 4124-4130
        • Wang T.
        • Feldman A.L.
        • Wada D.A.
        • et al.
        GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features.
        Blood. 2014; 123: 3007-3015
        • Iqbal J.
        • Wright G.
        • Wang C.
        • et al.
        Lymphoma Leukemia Molecular Profiling Project and the International Peripheral T-cell Lymphoma Project. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma.
        Blood. 2014; 123: 2915-2923
        • Amador C.
        • Greiner T.C.
        • Heavican T.B.
        • et al.
        Reproducing the molecular subclassification of peripheral T-cell lymphoma-NOS by immunohistochemistry.
        Blood. 2019; 134: 2159-2170
        • Heavican T.B.
        • Bouska A.
        • Yu J.
        • et al.
        Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma.
        Blood. 2019; 133: 1664-1676
        • Maura F.
        • Dodero A.
        • Carniti C.
        • et al.
        CDKN2A deletion is a frequent event associated with poor outcome in patients with peripheral T-cell lymphoma not otherwise specified (PTCL-NOS).
        Haematologica. 2021; 106: 2918-2926
        • Watatani Y.
        • Sato Y.
        • Miyoshi H.
        • et al.
        Molecular heterogeneity in peripheral T-cell lymphoma, not otherwise specified revealed by comprehensive genetic profiling.
        Leukemia. 2019; 33: 2867-2883
        • Dobay M.P.
        • Lemonnier F.
        • Missiaglia E.
        • et al.
        Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin.
        Haematologica. 2017; 102: e148-e151
        • Lemonnier F.
        • Couronné L.
        • Parrens M.
        • et al.
        Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters.
        Blood. 2012; 120: 1466-1469
        • Laginestra M.A.
        • Cascione L.
        • Motta G.
        • et al.
        Whole exome sequencing reveals mutations in FAT1 tumor suppressor gene clinically impacting on peripheral T-cell lymphoma not otherwise specified.
        Mod Pathol. 2020; 33: 179-187
        • Ji M.M.
        • Huang Y.H.
        • Huang J.Y.
        • et al.
        Histone modifier gene mutations in peripheral T-cell lymphoma not otherwise specified.
        Haematologica. 2018; 103: 679-687
        • Debackere K.
        • Marcelis L.
        • Demeyer S.
        • et al.
        Fusion transcripts FYN-TRAF3IP2 and KHDRBS1-LCK hijack T cell receptor signaling in peripheral T-cell lymphoma, not otherwise specified.
        Nat Commun. 2021; 12: 3705
        • Abate F.
        • da Silva-Almeida A.C.
        • Zairis S.
        • et al.
        Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas.
        Proc Natl Acad Sci U S A. 2017; 114: 764-769
        • Vasmatzis G.
        • Johnson S.H.
        • Knudson R.A.
        • et al.
        Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas.
        Blood. 2012; 120: 2280-2289
        • de Leval L.
        • Parrens M.
        • Le Bras F.
        • et al.
        Angioimmunoblastic T-cell lymphoma is the most common T-cell lymphoma in two distinct French information data sets.
        Haematologica. 2015; 100: e361-e364
        • Zhang Y.
        • Lee D.
        • Brimer T.
        • et al.
        Genomics of Peripheral T-Cell Lymphoma and Its Implications for Personalized Medicine.
        Front Oncol. 2019; 10: 898
        • Yoo H.Y.
        • Sung M.K.
        • Lee S.H.
        • et al.
        A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma.
        Nat Genet. 2014; 46: 371-375
        • Sakata-Yanagimoto M.
        • Enami T.
        • Yoshida K.
        • et al.
        Somatic RHOA mutation in angioimmunoblastic T cell lymphoma.
        Nat Genet. 2014; 46: 171-175
        • Ondrejka S.L.
        • Grzywacz B.
        • Bodo J.
        • et al.
        Angioimmunoblastic T-cell Lymphomas With the RHOA p.Gly17Val Mutation Have Classic Clinical and Pathologic Features.
        Am J Surg Pathol. 2016; 40: 335-341
        • Nagao R.
        • Kikuti Y.Y.
        • Carreras J.
        • et al.
        Clinicopathologic Analysis of Angioimmunoblastic T-cell Lymphoma With or Without RHOA G17V Mutation Using Formalin-fixed Paraffin-embedded Sections.
        Am J Surg Pathol. 2016; 40: 1041-1050
        • Willemsen M.
        • Abdul Hamid M.
        • Winkens B.
        • et al.
        Mutational heterogeneity of angioimmunoblastic T-cell lymphoma indicates distinct lymphomagenic pathways.
        Blood Cancer J. 2018; 8: 6
        • Steinhilber J.
        • Mederake M.
        • Bonzheim I.
        • et al.
        The pathological features of angioimmunoblastic T-cell lymphomas with IDH2R172 mutations.
        Mod Pathol. 2019; 32: 1123-1134
        • Lewis N.E.
        • Petrova-Drus K.
        • Huet S.
        • et al.
        Clonal hematopoiesis in angioimmunoblastic T-cell lymphoma with divergent evolution to myeloid neoplasms.
        Blood Adv. 2020; 4: 2261-2271
        • Quivoron C.
        • Couronné L.
        • Della Valle V.
        • et al.
        TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis.
        Cancer Cell. 2011; 20: 25-38
        • Nguyen T.B.
        • Sakata-Yanagimoto M.
        • Asabe Y.
        • et al.
        Identification of cell-type-specific mutations in nodal T-cell lymphomas.
        Blood Cancer J. 2017; 7: e516
        • Yoo H.Y.
        • Kim P.
        • Kim W.S.
        • et al.
        Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma.
        Haematologica. 2016; 101: 757-763
        • Rohr J.
        • Guo S.
        • Huo J.
        • et al.
        Recurrent activating mutations of CD28 in peripheral T-cell lymphomas.
        Leukemia. 2016; 30: 1062-1070
        • Zain J.M.
        • Hanona P.
        Aggressive T-cell lymphomas: 2021 Updates on diagnosis, risk stratification and management.
        Am J Hematol. 2021; 96: 1027-1046
        • Debackere K.
        • van der Krogt J.A.
        • Tousseyn T.
        • et al.
        FER and FES tyrosine kinase fusions in follicular T-cell lymphoma.
        Blood. 2020; 135: 584-588
        • Streubel B.
        • Vinatzer U.
        • Willheim M.
        • et al.
        Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma.
        Leukemia. 2006; 20: 313-318
        • Huang Y.
        • Moreau A.
        • Dupuis J.
        • et al.
        Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas.
        Am J Surg Pathol. 2009; 33: 682-690
        • Attygalle A.D.
        • Feldman A.L.
        • Dogan A.
        ITK/SYK translocation in angioimmunoblastic T-cell lymphoma.
        Am J Surg Pathol. 2013; 37: 1456-1457
        • Vallois D.
        • Dobay M.P.
        • Morin R.D.
        • et al.
        Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas.
        Blood. 2016; 128: 1490-1502
        • Falini B.
        • Martelli M.P.
        Anaplastic large cell lymphoma: changes in the World Health Organization classification and perspectives for targeted therapy.
        Haematologica. 2009; 94: 897-900
        • Morris S.W.
        • Kirstein M.N.
        • Valentine M.B.
        • et al.
        Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma.
        Science. 1994; 263: 1281-1284
        • Werner M.T.
        • Zhao C.
        • Zhang Q.
        • et al.
        Nucleophosmin-anaplastic lymphoma kinase: the ultimate oncogene and therapeutic target.
        Blood. 2017; 129: 823-831
        • Chiarle R.
        • Voena C.
        • Ambrogio C.
        • et al.
        The anaplastic lymphoma kinase in the pathogenesis of cancer.
        Nat Rev Cancer. 2008; 8: 11-23
        • Feldman A.L.
        • Vasmatzis G.
        • Asmann Y.W.
        • et al.
        Novel TRAF1-ALK fusion identified by deep RNA sequencing of anaplastic large cell lymphoma.
        Genes Chromosomes Cancer. 2013; 52: 1097-1102
        • Lobello C.
        • Tichy B.
        • Bystry V.
        • et al.
        STAT3 and TP53 mutations associate with poor prognosis in anaplastic large cell lymphoma.
        Leukemia. 2021; 35: 1500-1505
        • Larose H.
        • Prokoph N.
        • Matthews J.D.
        • et al.
        Whole Exome Sequencing reveals NOTCH1 mutations in anaplastic large cell lymphoma and points to Notch both as a key pathway and a potential therapeutic target.
        Haematologica. 2021; 106: 1693-1704
        • Parrilla Castellar E.R.
        • Jaffe E.S.
        • Said J.W.
        • et al.
        ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes.
        Blood. 2014; 124: 1473-1480
        • Feldman A.L.
        • Dogan A.
        • Smith D.I.
        • et al.
        Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing.
        Blood. 2011; 117: 915-919
        • Karube K.
        • Feldman A.L.
        Double-hit" of DUSP22 and TP63 rearrangements in anaplastic large cell lymphoma, ALK-negative.
        Blood. 2020; 135: 700
        • Crescenzo R.
        • Abate F.
        • Lasorsa E.
        • et al.
        European T-Cell Lymphoma Study Group, T-Cell Project: Prospective Collection of Data in Patients with Peripheral T-Cell Lymphoma and the AIRC 5xMille Consortium “Genetics-Driven Targeted Management of Lymphoid Malignancies”. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma.
        Cancer Cell. 2015; 27: 516-532
        • Scarfò I.
        • Pellegrino E.
        • Mereu E.
        • et al.
        • European T-Cell Lymphoma Study Group
        Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts.
        Blood. 2016; 127: 221-232
        • Boddicker R.L.
        • Razidlo G.L.
        • Dasari S.
        • et al.
        Integrated mate-pair and RNA sequencing identifies novel, targetable gene fusions in peripheral T-cell lymphoma.
        Blood. 2016; 128: 1234-1245
        • Fitzpatrick M.J.
        • Massoth L.R.
        • Marcus C.
        • et al.
        JAK2 Rearrangements Are a Recurrent Alteration in CD30+ Systemic T-Cell Lymphomas with Anaplastic Morphology.
        Am J Surg Pathol. 2021; 45: 895-904
        • Luchtel R.A.
        • Zimmermann M.T.
        • Hu G.
        • et al.
        Recurrent MSCE116Kmutations in ALK-negative anaplastic large cell lymphoma.
        Blood. 2019; 133: 2776-2789
        • Robb L.
        • Hartley L.
        • Wang C.C.
        • et al.
        musculin: a murine basic helix-loop-helix transcription factor gene expressed in embryonic skeletal muscle.
        Mech Dev. 1998; 76: 197-201