Advertisement
Review Article| Volume 5, ISSUE 1, P59-71, November 2022

Multiple Myeloma

  • Loren J. Joseph
    Correspondence
    Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Rabb #315, Boston, MA 02215.
    Affiliations
    Department of Pathology, Harvard Medical School, Boston, MA, USA

    Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Rabb #315, Boston, MA 02215, USA
    Search for articles by this author
Published:September 28, 2022DOI:https://doi.org/10.1016/j.yamp.2022.06.002

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Molecular Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Manakkat Vijay G.K.
        • Singh H.
        Cell fate dynamics and genomic programming of plasma cell precursors.
        Immunol Rev. 2021; 303: 62-71
        • Halliley J.L.
        • Tipton C.M.
        • Liesveld J.
        • et al.
        Long-lived plasma cells are contained within the CD19(-)CD38(hi)CD138(+) subset in human bone marrow.
        Immunity. 2015; 43: 132-145
        • Larsen J.T.
        • Chee C.E.
        • Lust J.A.
        • et al.
        Reduction in plasma cell proliferation after initial therapy in newly diagnosed multiple myeloma measures treatment response and predicts improved survival.
        Blood. 2011; 118: 2702-2707
        • Witzig T.E.
        • Timm M.
        • Larson D.
        • et al.
        Measurement of apoptosis and proliferation of bone marrow plasma cells in patients with plasma cell proliferative disorders.
        Br J Haematol. 1999; 104: 131-137
        • Samur M.K.
        • Aktas Samur A.
        • Fulciniti M.
        • et al.
        Genome-wide somatic alterations in multiple myeloma reveal a superior outcome group.
        J Clin Oncol. 2020; 38: 3107-3118
        • Oben B.
        • Froyen G.
        • Maclachlan K.H.
        • et al.
        Whole-genome sequencing reveals progressive versus stable myeloma precursor conditions as two distinct entities.
        Nat Commun. 2021; 12: 1861
        • Maura F.
        • Petljak M.
        • Lionetti M.
        • et al.
        Biological and prognostic impact of APOBEC-induced mutations in the spectrum of plasma cell dyscrasias and multiple myeloma cell lines.
        Leukemia. 2018; 32: 1044-1048
        • Affer M.
        • Chesi M.
        • Chen W.D.G.
        • et al.
        Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma.
        Leukemia. 2014; 28: 1725-1735
        • Barwick B.G.
        • Neri P.
        • Bahlis N.J.
        • et al.
        Multiple myeloma immunoglobulin lambda translocations portend poor prognosis.
        Nat Commun. 2019; 10: 1911
        • Rustad E.H.
        • Yellapantula V.D.
        • Glodzik D.
        • et al.
        Revealing the impact of structural variants in multiple myeloma.
        Blood Cancer Discov. 2020; 1: 258-273
        • Maura F.
        • Boyle E.M.
        • Rustad E.H.
        • et al.
        Chromothripsis as a pathogenic driver of multiple myeloma.
        Semin Cell Dev Biol. 2022; 123: 115-123
        • Aktas Samur A.
        • Minvielle S.
        • Shammas M.
        • et al.
        Deciphering the chronology of copy number alterations in multiple myeloma.
        Blood Cancer J. 2019; 9: 39
        • Bergsagel P.L.
        • Kuehl W.M.
        Molecular pathogenesis and a consequent classification of multiple myeloma.
        J Clin Oncol. 2005; 23: 6333-6338
        • Chapman M.A.
        • Lawrence M.S.
        • Keats J.J.
        • et al.
        Initial genome sequencing and analysis of multiple myeloma.
        Nature. 2011; 471: 467-472
        • Dutta A.K.
        • Alberge J.B.
        • Sklavenitis-Pistofidis R.
        • et al.
        Single-cell profiling of tumour evolution in multiple myeloma - opportunities for precision medicine.
        Nat Rev Clin Oncol. 2022; : 1-14
        • Haertle L.
        • Barrio S.
        • Munawar U.
        • et al.
        Cereblon enhancer methylation and IMiD resistance in multiple myeloma.
        Blood. 2021; 138: 1721-1726
        • Allmeroth K.
        • Horn M.
        • Kroef V.
        • et al.
        Bortezomib resistance mutations in PSMB5 determine response to second-generation proteasome inhibitors in multiple myeloma.
        Leukemia. 2021; 35: 887-892
        • Samur M.K.
        • Fulciniti M.
        • Aktas Samur A.
        • et al.
        Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma.
        Nat Commun. 2021; 12: 868
        • Da Vià M.C.
        • Dietrich O.
        • Truger M.
        • et al.
        Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma.
        Nat Med. 2021; 27: 616-619
        • Rustad E.H.
        • Yellapantula V.
        • Leongamornlert D.
        • et al.
        Timing the initiation of multiple myeloma.
        Nat Commun. 2020; 11: 1917
        • Maura F.
        • Rustad E.H.
        • Boyle E.M.
        • et al.
        Reconstructing the evolutionary history of multiple myeloma.
        Best Pract Res Clin Haematol. 2020; 33: 101145
        • Maura F.
        • Weinhold N.
        • Diamond B.
        • et al.
        The mutagenic impact of melphalan in multiple myeloma.
        Leukemia. 2021; 35: 2145-2150
        • Walker B.A.
        • Boyle E.M.
        • Wardell C.P.
        • et al.
        Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma.
        J Clin Oncol. 2015; 33: 3911-3920
        • Walker B.A.
        • Wardell C.P.
        • Murison A.
        • et al.
        APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma.
        Nat Commun. 2015; 6: 6997
        • Maura F.
        • Rustad E.H.
        • Yellapantula V.
        • et al.
        Role of AID in the temporal pattern of acquisition of driver mutations in multiple myeloma.
        Leukemia. 2020; 34: 1476-1480
        • van Beers E.H.
        • Huigh D.
        • Bosman L.
        • et al.
        Analytical validation of SKY92 for the identification of high-risk multiple myeloma.
        J Mol Diagn. 2021; 23: 120-129
        • Melchor L.
        • Brioli A.
        • Wardell C.P.
        • et al.
        Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma.
        Leukemia. 2014; 28: 1705-1715
        • Ledergor G.
        • Weiner A.
        • Zada M.
        • et al.
        Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma.
        Nat Med. 2018; 24: 1867-1876
        • Cohen Y.C.
        • Zada M.
        • Wang S.Y.
        • et al.
        Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing.
        Nat Med. 2021; 27: 491-503
        • Meißner T.
        • Seckinger A.
        • Hemminki K.
        • et al.
        Profound impact of sample processing delay on gene expression of multiple myeloma plasma cells.
        BMC Med Genomics. 2015; 8: 85
        • Ahmann G.J.
        • Chng W.J.
        • Henderson K.J.
        • et al.
        Effect of tissue shipping on plasma cell isolation, viability, and RNA integrity in the context of a centralized good laboratory practice-certified tissue banking facility.
        Cancer Epidemiol Biomarkers Prev. 2008; 17: 666-673
        • Sonneveld P.
        • Durie B.G.
        • Lokhorst H.M.
        • et al.
        Modulation of multidrug-resistant multiple myeloma by cyclosporin.
        Lancet. 1992; 340: 255-259
        • Baccin C.
        • Al-Sabah J.
        • Velten L.
        • et al.
        Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization.
        Nat Cell Biol. 2020; 22: 38-48
        • Tikhonova A.N.
        • Dolgalev I.
        • Hu H.
        • et al.
        The bone marrow microenvironment at single-cell resolution.
        Nature. 2019; https://doi.org/10.1038/s41586-019-1104-8
        • Coutu D.L.
        • Kokkaliaris K.D.
        • Kunz L.
        • et al.
        Three-dimensional map of nonhematopoietic bone and bone-marrow cells and molecules.
        Nat Biotechnol. 2017; 35: 1202-1210
        • Zavidij O.
        • Haradhvala N.J.
        • Mouhieddine T.H.
        • et al.
        Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma.
        Nat Cancer. 2020; 1: 493-506
        • Sklavenitis-Pistofidis R.
        • Dutta A.K.
        • Ujwary S.
        • et al.
        Single-cell RNA-sequencing identifies immune biomarkers of response to immunotherapy in patients with high-risk smoldering myeloma.
        Blood. 2021; 138: 330
        • de Jong M.M.E.
        • Kellermayer Z.
        • Papazian N.
        • et al.
        The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape.
        Nat Immunol. 2021; 22: 769-780
        • Sklavenitis-Pistofidis R.
        • Getz G.
        • Ghobrial I.
        Single-cell RNA sequencing: one step closer to the clinic.
        Nat Med. Published online March. 2021; 4https://doi.org/10.1038/s41591-021-01276-y
        • Rasche L.
        • Chavan S.S.
        • Stephens O.W.
        • et al.
        Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing.
        Nat Commun. 2017; 8: 268
        • Rasche L.
        • Schinke C.
        • Maura F.
        • et al.
        The spatio-temporal evolution of multiple myeloma from baseline to relapse-refractory states.
        Nat Commun. 2022; 13: 4517
        • Merz M.
        • Merz A.M.A.
        • Wang J.
        • et al.
        Deciphering spatial genomic heterogeneity at a single cell resolution in multiple myeloma.
        Nat Commun. 2022; 13: 807
        • Cho C.S.
        • Xi J.
        • Si Y.
        • et al.
        Microscopic examination of spatial transcriptome using Seq-Scope.
        Cell. 2021; 184: 3559-3572.e22
        • Lewis S.M.
        • Asselin-Labat M.L.
        • Nguyen Q.
        • et al.
        Spatial omics and multiplexed imaging to explore cancer biology.
        Nat Methods. 2021; https://doi.org/10.1038/s41592-021-01203-6
        • Merritt C.R.
        • Ong G.T.
        • Church S.E.
        • et al.
        Multiplex digital spatial profiling of proteins and RNA in fixed tissue.
        Nat Biotechnol. 2020; 38: 586-599
        • Kazandjian D.
        • Dew A.
        • Hill E.
        The changing role of high dose melphalan with stem cell rescue in the treatment of newly diagnosed multiple myeloma in the era of modern therapies-back to the future.
        Best Pract Res Clin Haematol. 2020; 33: 101150
        • Frampton J.E.
        Isatuximab: a review of its use in multiple myeloma.
        Target Oncol. 2021; 16: 675-686
        • Murray D.L.
        • Puig N.
        • Kristinsson S.
        • et al.
        Mass spectrometry for the evaluation of monoclonal proteins in multiple myeloma and related disorders: an International Myeloma Working Group Mass Spectrometry Committee Report.
        Blood Cancer J. 2021; 11: 24
        • Dasari S.
        • Kohlhagen M.C.
        • Dispenzieri A.
        • et al.
        Detection of plasma cell disorders by mass spectrometry: a comprehensive review of 19,523 cases.
        Mayo Clin Proc. 2022; 97: 294-307
        • Attal M.
        • Lauwers-Cances V.
        • Hulin C.
        • et al.
        Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma.
        N Engl J Med. 2017; 376: 1311-1320
        • Rosiñol L.
        • Oriol A.
        • Teruel A.I.
        • et al.
        Bortezomib and thalidomide maintenance after stem cell transplantation for multiple myeloma: a PETHEMA/GEM trial.
        Leukemia. 2017; https://doi.org/10.1038/leu.2017.35
        • Laubach J.P.
        • Schjesvold F.
        • Mariz M.
        • et al.
        Efficacy and safety of oral panobinostat plus subcutaneous bortezomib and oral dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma (PANORAMA 3): an open-label, randomised, phase 2 study.
        Lancet Oncol. 2021; 22: 142-154
        • Grosicki S.
        • Simonova M.
        • Spicka I.
        • et al.
        Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): a randomised, open-label, phase 3 trial.
        Lancet. 2020; 396: 1563-1573
        • Goldschmidt H.
        • Mai E.K.
        • Dürig J.
        • et al.
        Response-adapted lenalidomide maintenance in newly diagnosed myeloma: results from the phase III GMMG-MM5 trial.
        Leukemia. 2020; 34: 1853-1865
        • Lim S.
        • Khoo R.
        • Peh K.M.
        • et al.
        bioPROTACs as versatile modulators of intracellular therapeutic targets including proliferating cell nuclear antigen (PCNA).
        Proc Natl Acad Sci U S A. 2020; 117: 5791-5800
        • Burslem G.M.
        • Crews C.M.
        Proteolysis-targeting chimeras as therapeutics and tools for biological discovery.
        Cell. 2020; 181: 102-114
        • Pfaff P.
        • Samarasinghe K.T.G.
        • Crews C.M.
        • et al.
        Reversible spatiotemporal control of induced protein degradation by bistable PhotoPROTACs.
        ACS Cent Sci. 2019; 5: 1682-1690
        • Dale B.
        • Cheng M.
        • Park K.S.
        • et al.
        Advancing targeted protein degradation for cancer therapy.
        Nat Rev Cancer. 2021; 21: 638-654
        • Berdeja J.G.
        • Madduri D.
        • Usmani S.Z.
        • et al.
        Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study.
        Lancet. 2021; 398: 314-324
        • Munshi N.C.
        • Anderson Jr., L.D.
        • Shah N.
        • et al.
        Idecabtagene vicleucel in relapsed and refractory multiple myeloma.
        N Engl J Med. 2021; 384: 705-716
        • Mikkilineni L.
        • Kochenderfer J.N.
        CAR T cell therapies for patients with multiple myeloma.
        Nat Rev Clin Oncol. 2021; 18: 71-84
        • Teoh P.J.
        • Chng W.J.
        CAR T-cell therapy in multiple myeloma: more room for improvement.
        Blood Cancer J. 2021; 11: 84
        • Chari A.
        • Vogl D.T.
        • Gavriatopoulou M.
        • et al.
        Oral selinexor-dexamethasone for triple-class refractory multiple myeloma.
        N Engl J Med. 2019; 381: 727-738
        • Neri P.
        • Maity R.
        • Alberge J.B.
        • et al.
        Mutations and copy number gains of the BCL2 family members mediate resistance to venetoclax in multiple myeloma (MM) patients.
        Blood. 2019; 134: 572
        • Diamond B.T.
        • Rustad E.
        • Maclachlan K.
        • et al.
        Defining the undetectable: the current landscape of minimal residual disease assessment in multiple myeloma and goals for future clarity.
        Blood Rev. 2021; 46: 100732
        • Maclachlan K.H.
        • Came N.
        • Diamond B.
        • et al.
        Minimal residual disease in multiple myeloma: defining the role of next generation sequencing and flow cytometry in routine diagnostic use.
        Pathology. 2021; 53: 385-399
        • Eveillard M.
        • Rustad E.
        • Roshal M.
        • et al.
        Comparison of MALDI-TOF mass spectrometry analysis of peripheral blood and bone marrow-based flow cytometry for tracking measurable residual disease in patients with multiple myeloma.
        Br J Haematol. 2020; 189: 904-907
        • Dispenzieri A.
        • Krishnan A.
        • Arendt B.
        • et al.
        Mass-fix better predicts for PFS and OS than standard methods among multiple myeloma patients participating on the STAMINA trial (BMT CTN 0702 /07LT).
        Blood Cancer J. 2022; 12: 27
        • Kumar S.
        • Paiva B.
        • Anderson K.C.
        • et al.
        International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma.
        Lancet Oncol. 2016; 17: e328-e346
        • Roshal M.
        Minimal residual disease detection by flow cytometry in multiple myeloma: why and how?.
        Semin Hematol. 2018; 55: 4-12
        • Ho C.
        • Syed M.
        • Roshal M.
        • et al.
        Routine evaluation of minimal residual disease in myeloma using next-generation sequencing clonality testing: feasibility, challenges, and direct comparison with high-sensitivity flow cytometry.
        J Mol Diagn. 2021; 23: 181-199
        • Costa L.J.
        • Derman B.A.
        • Bal S.
        • et al.
        International harmonization in performing and reporting minimal residual disease assessment in multiple myeloma trials.
        Leukemia. 2021; 35: 18-30
        • Yee A.J.
        • Raje N.
        Minimal residual disease in multiple myeloma: why, when, where.
        Hematol Am. Soc Hematol Educ Program. 2021; 2021: 37-45
      1. Lohr JG, Kim S, Gould J, et al. Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci Transl Med. 8:363ra147.

        • Waldschmidt J.M.
        • Vijaykumar T.
        • Knoechel B.
        • et al.
        Tracking myeloma tumor DNA in peripheral blood.
        Best Pract Res Clin Haematol. 2020; 33: 101146