Advertisement
Review Article| Volume 5, ISSUE 1, P131-139, November 2022

Artificial Intelligence/Machine Learning and Mechanistic Modeling Approaches as Translational Tools to Advance Personalized Medicine Decisions

Published:September 28, 2022DOI:https://doi.org/10.1016/j.yamp.2022.06.003

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Molecular Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Baker R.E.
        • Pena J.M.
        • Jayamohan J.
        • et al.
        Mechanistic models versus machine learning, a fight worth fighting for the biological community?.
        Biol Lett. 2018; 14https://doi.org/10.1098/rsbl.2017.0660
        • Vizirianakis I.S.
        • Miliotou A.N.
        • Mystridis G.A.
        • et al.
        Tackling pharmacological response heterogeneity by PBPK modeling to advance precision medicine productivity of nanotechnology and genomics therapeutics.
        Expert Rev Precision Med Drug Development. 2019; 4: 139-151
        • Judd R.M.
        Machine learning in medical imaging: all journeys begin with a single step.
        JACC Cardiovasc Imaging. 2020; 13: 696-698
        • Mittas N.
        • Chatzopoulou F.
        • Kyritsis K.A.
        • et al.
        A risk-stratification machine learning framework for the prediction of coronary artery disease severity: insights from the GESS trial.
        Front Cardiovasc Med. 2021; 8: 812182
        • Seetharam K.
        • Brito D.
        • Farjo P.D.
        • et al.
        The role of artificial intelligence in cardiovascular imaging: state of the art review.
        Front Cardiovasc Med. 2020; 7: 618849
        • Silverio A.
        • Cavallo P.
        • De Rosa R.
        • et al.
        Big health data and cardiovascular diseases: a challenge for research, an opportunity for clinical care.
        Front Med (Lausanne). 2019; 6: 36
        • Chatzopoulou F.
        • Kyritsis K.A.
        • Papagiannopoulos C.I.
        • et al.
        Dissecting miRNA-gene networks to map clinical utility roads of pharmacogenomics-guided therapeutic decisions in cardiovascular precision medicine.
        Cells. 2022; 11: 607
        • Hulsen T.
        • Jamuar S.S.
        • Moody A.R.
        • et al.
        From Big Data to Precision Medicine.
        Front Med (Lausanne). 2019; 6: 34
        • Vizirianakis I.S.
        Nanomedicine and personalized medicine toward the application of pharmacotyping in clinical practice to improve drug-delivery outcomes.
        Nanomedicine. 2011; 7: 11-17
        • Vizirianakis I.S.
        • Fatouros D.G.
        Personalized nanomedicine: paving the way to the practical clinical utility of genomics and nanotechnology advancements.
        Adv Drug Deliv Rev. 2012; 64: 1359-1362
        • Bhatt D.K.
        • Mehrotra A.
        • Gaedigk A.
        • et al.
        Age- and Genotype-Dependent Variability in the Protein Abundance and Activity of Six Major Uridine Diphosphate-Glucuronosyltransferases in Human Liver.
        Clin Pharmacol Ther. 2019; 105: 131-141
        • Lau E.
        • Wu J.C.
        Omics, big data, and precision medicine in cardiovascular sciences.
        Circ Res. 2018; 122: 1165-1168
        • Olivera P.
        • Danese S.
        • Jay N.
        • et al.
        Big data in IBD: a look into the future.
        Nat Rev Gastroenterol Hepatol. 2019; 16: 312-321
        • Ngiam K.Y.
        • Khor I.W.
        Big data and machine learning algorithms for health-care delivery.
        Lancet Oncol. 2019; 20: e262-e273
        • World Health Organization
        Ethics and governance of artificial intelligence for health: WHO guidance.
        World Health Organization, 2021 (Available at:) (Accessed 2021)
        • Krittanawong C.
        • Johnson K.W.
        • Rosenson R.S.
        • et al.
        Deep learning for cardiovascular medicine: a practical primer.
        Eur Heart J. 2019; 40: 2058-2073
        • Krittanawong C.
        • Zhang H.
        • Wang Z.
        • et al.
        Artificial intelligence in precision cardiovascular medicine.
        J Am Coll Cardiol. 2017; 69: 2657-2664
        • Ranka S.
        • Reddy M.
        • Noheria A.
        Artificial intelligence in cardiovascular medicine.
        Curr Opin Cardiol. 2021; 36: 26-35
        • Gibson W.J.
        • Nafee T.
        • Travis R.
        • et al.
        Machine learning versus traditional risk stratification methods in acute coronary syndrome: a pooled randomized clinical trial analysis.
        J Thromb Thrombolysis. 2020; 49: 1-9
        • Lee W.
        • Lee J.
        • Woo S.I.
        • et al.
        Machine learning enhances the performance of short and long-term mortality prediction model in non-ST-segment elevation myocardial infarction.
        Sci Rep. 2021; 11: 12886
        • Fernandez-Ruiz I.
        Machine learning predicts risk in.
        ACS Nat Rev Cardiol. 2021; 18: 230
        • D'Ascenzo F.
        • De Filippo O.
        • Gallone G.
        • et al.
        Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets.
        Lancet. 2021; 397: 199-207
        • Al'Aref S.J.
        • Maliakal G.
        • Singh G.
        • et al.
        Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry.
        Eur Heart J. 2020; 41: 359-367
        • Coenen A.
        • Kim Y.H.
        • Kruk M.
        • et al.
        Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: result From the MACHINE consortium.
        Circ Cardiovasc Imaging. 2018; 11: e007217
        • Tang C.X.
        • Liu C.Y.
        • Lu M.J.
        • et al.
        CT FFR for ischemia-specific CAD with a new computational fluid dynamics algorithm: a chinese multicenter study.
        JACC Cardiovasc Imaging. 2020; 13: 980-990
        • Hou Z.H.
        • Lu B.
        • Li Z.N.
        • et al.
        Machine learning for pretest probability of obstructive coronary stenosis in symptomatic patients.
        JACC Cardiovasc Imaging. 2019; 12: 2584-2586
        • Betancur J.
        • Commandeur F.
        • Motlagh M.
        • et al.
        Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study.
        JACC Cardiovasc Imaging. 2018; 11: 1654-1663
        • Betancur J.
        • Hu L.H.
        • Commandeur F.
        • et al.
        Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study.
        J Nucl Med. 2019; 60: 664-670
        • Vizirianakis I.S.
        • Chatzopoulou F.
        • Papazoglou A.S.
        • et al.
        The GEnetic Syntax Score: a genetic risk assessment implementation tool grading the complexity of coronary artery disease-rationale and design of the GESS study.
        BMC Cardiovasc Disord. 2021; 21: 284
        • McGranahan N.
        • Swanton C.
        Clonal heterogeneity and tumor evolution: past, present, and the future.
        Cell. 2017; 168: 613-628
        • Marigorta U.M.
        • Rodriguez J.A.
        • Gibson G.
        • et al.
        Replicability and prediction: lessons and challenges from GWAS.
        Trends Genet. 2018; 34: 504-517
        • Doudican N.A.
        • Kumar A.
        • Singh N.K.
        • et al.
        Personalization of cancer treatment using predictive simulation.
        J Translational Med. 2015; 13: 43
        • Gal J.
        • Milano G.
        • Ferrero J.M.
        • et al.
        Optimizing drug development in oncology by clinical trial simulation: Why and how?.
        Brief Bioinformatics. 2018; 19: 1203-1217
        • Mo H.
        • Breitling R.
        • Francavilla C.
        • et al.
        Data integration and mechanistic modelling for breast cancer biology: Current state and future directions.
        Curr Opin Endocr Metab Res. 2022; 24: 100350
        • Fong E.L.S.
        • Iyer N.G.
        Next generation in vitro tumor models guiding cancer therapy.
        Adv Drug Deliv Rev. 2021; 179: 114047
        • Mascheroni P.
        • Savvopoulos S.
        • Alfonso J.C.L.
        • et al.
        Improving personalized tumor growth predictions using a Bayesian combination of mechanistic modeling and machine learning.
        Commun Med. 2021; 1: 19
        • Nicolo C.
        • Perier C.
        • Prague M.
        • et al.
        Machine learning and mechanistic modeling for prediction of metastatic relapse in early-stage breast cancer.
        JCO Clin Cancer Inform. 2020; 4: 259-274
        • Ganguli R.
        • Franklin J.
        • Yu X.
        • et al.
        Machine learning methods to predict presence of residual cancer following hysterectomy.
        Sci Rep. 2022; 12: 2738
        • Cuocolo R.
        • Caruso M.
        • Perillo T.
        • et al.
        Machine learning in oncology: a clinical appraisal.
        Cancer Lett. 2020; 481: 55-62
        • Benzekry S.
        Artificial intelligence and mechanistic modeling for clinical decision making in oncology.
        Clin Pharmacol Ther. 2020; 108: 471-486
        • Thomas R.M.
        • Van Dyke T.
        • Merlino G.
        • et al.
        Concepts in cancer modeling: a brief history.
        Cancer Res. 2016; 76: 5921-5925
        • Tabassum S.
        • Rosli N.B.
        • Binti Mazalan M.S.A.
        Mathematical modeling of cancer growth process: a review.
        J Phys Conf Ser. 2019; 1366: 012018
        • Zangooei M.H.
        • Margolis R.
        • Hoyt K.
        Multiscale computational modeling of cancer growth using features derived from microCT images.
        Sci Rep. 2021; 11: 18524
        • Rostami-Hodjegan A.
        Reverse translation in PBPK and QSP: going backwards in order to go forward with confidence.
        Clin Pharmacol Ther. 2018; 103: 224-232
        • Jones H.
        • Rowland-Yeo K.
        Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development.
        CPT Pharmacometrics Syst Pharmacol. 2013; 2: e63
        • Rowland M.
        • Peck C.
        • Tucker G.
        Physiologically-based pharmacokinetics in drug development and regulatory science.
        Annu Rev Pharmacol Toxicol. 2011; 51: 45-73
        • Chetty M.
        • Rose R.H.
        • Abduljalil K.
        • et al.
        Applications of linking PBPK and PD models to predict the impact of genotypic variability, formulation differences, differences in target binding capacity and target site drug concentrations on drug responses and variability.
        Front Pharmacol. 2014; 5: 258https://doi.org/10.3389/fphar.2014.00258
        • Tang Y.
        • Cao Y.
        Modeling pharmacokinetics and pharmacodynamics of therapeutic antibodies: progress, challenges, and future directions.
        Pharmaceutics. 2021; 13: 422
        • Sadiq M.W.
        • Nielsen E.I.
        • Khachman D.
        • et al.
        A whole-body physiologically based pharmacokinetic (WB-PBPK) model of ciprofloxacin: a step towards predicting bacterial killing at sites of infection.
        J Pharmacokinet Pharmacodyn. 2017; 44: 69-79
        • Kierzek A.M.
        • Hickling T.P.
        • Figueroa I.
        • et al.
        A quantitative systems pharmacology consortium approach to managing immunogenicity of therapeutic proteins.
        CPT Pharmacometrics Syst Pharmacol. 2019; 8: 773-776
        • Pilla Reddy V.
        • El-Khateeb E.
        • Jo H.
        • et al.
        Pharmacokinetics under the COVID-19 storm.
        Br J Clin Pharmacol. 2020; 23: 14668
        • Geerts H.
        • van der Graaf P.
        A modeling informed quantitative approach to salvage clinical trials interrupted due to COVID-19.
        Alzheimers Dement (N Y). 2020; 6: e12053
        • Piriyapongsa J.
        • Sukritha C.
        • Kaewprommal P.
        • et al.
        PharmVIP: A Web-Based Tool for Pharmacogenomic Variant Analysis and Interpretation.
        J Pers Med. 2021; 11https://doi.org/10.3390/jpm11111230
        • Bousman C.A.
        • Wu P.
        • Aitchison K.J.
        • et al.
        Sequence2Script: a web-based tool for translation of pharmacogenetic data into evidence-based prescribing recommendations.
        Front Pharmacol. 2021; 12https://doi.org/10.3389/fphar.2021.636650
        • Pandi M.T.
        • Koromina M.
        • Tsafaridis I.
        • et al.
        A novel machine learning-based approach for the computational functional assessment of pharmacogenomic variants.
        Hum Genomics. 2021; 15: 51
        • Chen E.P.
        • Bondi R.W.
        • Michalski P.J.
        Model-based target pharmacology assessment (mTPA): an approach using PBPK/PD modeling and machine learning to design medicinal chemistry and DMPK strategies in early drug discovery.
        J Med Chem. 2021; 64: 3185-3196
        • Chakraborty C.
        • Sharma A.R.
        • Bhattacharya M.
        • et al.
        The drug repurposing for COVID-19 clinical trials provide very effective therapeutic combinations: lessons learned from major clinical studies.
        Front Pharmacol. 2021; 12: 704205
        • Cui C.
        • Zhang M.
        • Yao X.
        • et al.
        Dose selection of chloroquine phosphate for treatment of COVID-19 based on a physiologically based pharmacokinetic model.
        Acta Pharm Sin B. 2020; 10: 1216-1227
        • Verscheijden L.F.M.
        • van der Zanden T.M.
        • van Bussel L.P.M.
        • et al.
        Chloroquine dosing recommendations for pediatric covid-19 supported by modeling and simulation.
        Clin Pharmacol Ther. 2020; 108: 248-252
        • Zhang M.
        • Yao X.
        • Hou Z.
        • et al.
        Development of a physiologically based pharmacokinetic model for hydroxychloroquine and its application in dose optimization in specific COVID-19 patients.
        Front Pharmacol. 2020; 11: 585021