Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Advances in Molecular PathologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Realizing the promise of cancer predisposition genes.Nature. 2014; 505: 302-308https://doi.org/10.1038/nature12981
- Retinoblastoma.Pediatr Clin North Am. 2015; 62: 201-223
- Comprehensive characterization of RB1 mutant and MYCN amplified retinoblastoma cell lines.Exp Cell Res. 2019; 375: 92-99https://doi.org/10.1016/j.yexcr.2018.12.018
- DICER1 mutations in familial pleuropulmonary blastoma.Science. 2009; 325: 965https://doi.org/10.1126/science.1174334
- Wilms tumor, pleuropulmonary blastoma, and DICER1: case report and literature review.World J Surg Oncol. 2018; 16: 164https://doi.org/10.1186/s12957-018-1469-4
- DICER1 tumor predisposition syndrome: an evolving story initiated with the pleuropulmonary blastoma.Mod Pathol. 2022; 35: 4-22https://doi.org/10.1038/s41379-021-00905-8
- Expanding the phenotype of mutations in DICER1: mosaic missense mutations in the RNase IIIb domain of DICER1 cause GLOW syndrome.J Med Genet. 2014; 51: 294-302https://doi.org/10.1136/jmedgenet-2013-101943
- Hotspot Mutations in DICER1 Causing GLOW Syndrome-Associated Macrocephaly via Modulation of Specific microRNA Populations Result in the Activation of PI3K/ATK/mTOR Signaling.Microrna. 2020; 9: 70-80
- High-sensitivity sequencing reveals multi-organ somatic mosaicism causing DICER1 syndrome.J Med Genet. 2016; 53: 43-52https://doi.org/10.1136/jmedgenet-2015-103428
- The landscape of genomic alterations across childhood cancers.Nature. 2018; 555: 321-327https://doi.org/10.1038/nature25480
- Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li-Fraumeni syndrome.Curr Opin Oncol. 2018; 30: 23-29https://doi.org/10.1097/CCO.0000000000000423
- Clinical and genetic characteristics of children with acute lymphoblastic leukemia and Li-Fraumeni syndrome.Leukemia. 2021; 35: 1475-1479https://doi.org/10.1038/s41375-021-01163-y
- TP53 mutations in human cancers: origins, consequences, and clinical use.Cold Spring Harb Perspect Biol. 2010; 2: a001008https://doi.org/10.1101/cshperspect.a001008
- Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes.Oncogene. 2004; 23: 2330-2338https://doi.org/10.1038/sj.onc.1207396
- Hereditary Cancer Syndromes-A Primer on Diagnosis and Management: Part 1: Breast-Ovarian Cancer Syndromes.Mayo Clin Proc. 2019; 94: 1084-1098https://doi.org/10.1016/j.mayocp.2019.02.017
- Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers.JAMA. 2017; 317: 2402-2416https://doi.org/10.1001/jama.2017.7112
- Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).Cancer Epidemiol Biomarkers Prev. 2012; 21: 134-147https://doi.org/10.1158/1055-9965.EPI-11-0775
- How do mutations affecting the breast cancer genes BRCA1 and BRCA2 cause cancer susceptibility?.DNA Repair (Amst). 2019; 81: 102668https://doi.org/10.1016/j.dnarep.2019.102668
- Pathogenic Germline Variants in 10,389 Adult Cancers.Cell. 2018; 173: 355-370.e14
- Hereditary Cancer Syndromes-A Primer on Diagnosis and Management, Part 2: Gastrointestinal Cancer Syndromes.Mayo Clin Proc. 2019; 94: 1099-1116https://doi.org/10.1016/j.mayocp.2019.01.042
- Familial Adenomatous Polyposis Syndrome: An Update and Review of Extraintestinal Manifestations.Arch Pathol Lab Med. 2019; 143: 1382-1398https://doi.org/10.5858/arpa.2018-0570-RA
- Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting.Cancer Metastasis Rev. 2018; 37: 159-172https://doi.org/10.1007/s10555-017-9725-6
- The genetic basis of familial adenomatous polyposis and its implications for clinical practice and risk management.Appl Clin Genet. 2015; 8: 95-107https://doi.org/10.2147/TACG.S51484
- Peutz-Jeghers syndrome: Skin manifestations and endocrine anomalies (Review).Exp Ther Med. 2021; 22: 1387https://doi.org/10.3892/etm.2021.10823
- PTEN Hamartoma Tumor Syndrome: A Clinical Overview.Cancers (Basel). 2019; 11: 844https://doi.org/10.3390/cancers11060844
- Lynch Syndrome-Associated Colorectal Cancer.N Engl J Med. 2018; 379: 764-773https://doi.org/10.1056/NEJMcp1714533
- Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium 'care for CMMRD' (C4CMMRD).J Med Genet. 2014; 51: 355-365https://doi.org/10.1136/jmedgenet-2014-102284
- Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study.J Natl Cancer Inst. 2005; 97: 1204-1210https://doi.org/10.1093/jnci/dji240
- Risk of Gonadoblastoma Development in Patients with Turner Syndrome with Cryptic Y Chromosome.Mater Horm Cancer. 2017; 8: 166-173https://doi.org/10.1007/s12672-017-0291-8
- Origins of leukaemia in children with Down syndrome.Nat Rev Cancer. 2005; 5: 11-20https://doi.org/10.1038/nrc1525
- Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome.Nat Genet. 2002; 32: 148-152https://doi.org/10.1038/ng955
- Trisomy 21 enhances human fetal erythro-megakaryocytic development.Blood. 2008; 112: 4503-4506https://doi.org/10.1182/blood-2008-05-157859
- The biology of pediatric acute megakaryoblastic leukemia.Blood. 2015; 126: 943-949https://doi.org/10.1182/blood-2015-05-567859
- Integrated genetic and epigenetic analysis revealed heterogeneity of acute lymphoblastic leukemia in Down syndrome.Cancer Sci. 2019; 110: 3358-3367https://doi.org/10.1111/cas.14160
- Constitutional aneuploidy and cancer predisposition.Hum Mol Genet. 2009; 18: R84-R93https://doi.org/10.1093/hmg/ddp084
- Germline Structural Variations in Cancer Predisposition Genes.Front Genet. 2021; 12: 634217https://doi.org/10.3389/fgene.2021.634217
- Is there an association with constitutional structural chromosomal abnormalities and hematologic neoplastic process? A short review.Ann Hematol. 2009; 88: 293-299https://doi.org/10.1007/s00277-008-0672-8
- Mortality and cancer incidence in carriers of constitutional t(11;22)(q23;q11) translocations: A prospective study.Int J Cancer. 2019; 145: 1493-1498https://doi.org/10.1002/ijc.32031
- Constitutional abnormalities of chromosome 21 predispose to iAMP21-acute lymphoblastic leukaemia.Eur J Med Genet. 2016; 59: 162-165https://doi.org/10.1016/j.ejmg.2016.01.006
- Diagnosis and Management of Beckwith-Wiedemann Syndrome.Front Pediatr. 2020; 7: 562https://doi.org/10.3389/fped.2019.00562
- Germline and sporadic cancers driven by the RAS pathway: parallels and contrasts.Ann Oncol. 2020; 31: 873-883https://doi.org/10.1016/j.annonc.2020.03.291
- Neurofibromatosis type 1: New developments in genetics and treatment.J Am Acad Dermatol. 2021; 84: 1667-1676https://doi.org/10.1016/j.jaad.2020.07.105
- An update on the CNS manifestations of neurofibromatosis type 2.Acta Neuropathol. 2020; 139: 643-665https://doi.org/10.1007/s00401-019-02029-5
- The RASopathy Family: Consequences of Germline Activation of the RAS/MAPK Pathway.Endocr Rev. 2018; 39: 676-700https://doi.org/10.1210/er.2017-00232
- Inherited bone marrow failure syndromes in adolescents and young adults.Ann Med. 2014; 46: 353-363https://doi.org/10.3109/07853890.2014.915579
- Genotype-phenotype associations in Fanconi anemia: A literature review.Blood Rev. 2019; 37: 100589https://doi.org/10.1016/j.blre.2019.100589
- A Review of Fanconi Anemia for the Practicing Pediatrician.Pediatr Ann. 2015; 44: 444-445
- An update on Fanconi anemia: Clinical, cytogenetic and molecular approaches (Review).Biomed Rep. 2021; 15: 74https://doi.org/10.3892/br.2021.1450
- Chromosome instability syndromes.Nat Rev Dis Primers. 2019; 5: 64https://doi.org/10.1038/s41572-019-0113-0
- Germline Mutations in Predisposition Genes in Pediatric Cancer.N Engl J Med. 2015; 373: 2336-2346https://doi.org/10.1056/NEJMoa1508054
- Germline Variants in Targeted Tumor Sequencing Using Matched Normal DNA.JAMA Oncol. 2016; 2: 104-111https://doi.org/10.1001/jamaoncol.2015.5208
- Mutation Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing.JAMA. 2017; 318: 825-835https://doi.org/10.1001/jama.2017.11137
- Prospective Evaluation of Germline Alterations in Patients With Exocrine Pancreatic Neoplasms.J Natl Cancer Inst. 2018; 110: 1067-1074
- Advances in germline predisposition to acute leukaemias and myeloid neoplasms.Nat Rev Cancer. 2021; 21: 122-137https://doi.org/10.1038/s41568-020-00315-z
- Germline ETV6 mutations and predisposition to hematological malignancies.Int J Hematol. 2017; 106: 189-195https://doi.org/10.1007/s12185-017-2259-4
- ETV6-related thrombocytopenia and leukemia predisposition.Blood. 2019; 134: 663-667https://doi.org/10.1182/blood.2019852418
- ANKRD26-related thrombocytopenia and myeloid malignancies.Blood. 2013; 122 (–1989): 1987
- High frequency of germline RUNX1 mutations in patients with RUNX1-mutated AML.Blood. 2020; 135: 1882-1886https://doi.org/10.1182/blood.2019003357
- Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making.JCO Precis Oncol. 2017; 2017 (PO.17): 00029https://doi.org/10.1200/PO.17.00029
- Prevalence of Germline Mutations in Cancer Susceptibility Genes in Patients with Advanced Renal Cell Carcinoma.JAMA Oncol. 2018; 4: 1228-1235https://doi.org/10.1001/jamaoncol.2018.1986
- Cancer Susceptibility Mutations in Patients with Urothelial Malignancies.J Clin Oncol. 2020; 38: 406-414https://doi.org/10.1200/JCO.19.01395
- Identification of ALK as a major familial neuroblastoma predisposition gene.Nature. 2008; 455: 930-935https://doi.org/10.1038/nature07261
- Androgen receptor signaling and mutations in prostate cancer.Asian J Androl. 2010; 12: 639-657https://doi.org/10.1038/aja.2010.89
- Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma.N Engl J Med. 2003; 349: 1722-1729https://doi.org/10.1056/NEJMoa031237
- Mutation of CEBPA in familial acute myeloid leukemia.N Engl J Med. 2004; 351: 2403-2407https://doi.org/10.1056/NEJMoa041331
- Inherited and Somatic Defects in DDX41 in Myeloid Neoplasms.Cancer Cell. 2015; 27: 658-670https://doi.org/10.1016/j.ccell.2015.03.017
- Novel germline mutation: EGFR V843I in patient with multiple lung adenocarcinomas and family members with lung cancer.Ann Thorac Surg. 2008; 85: 1430-1432https://doi.org/10.1016/j.athoracsur.2007.10.012
- Germline ERBB3 mutation in familial non-small-cell lung carcinoma: expanding ErbB's role in oncogenesis.Hum Mol Genet. 2021; 30: 2393-2401https://doi.org/10.1093/hmg/ddab172
- Hereditary pancreatic cancer.Int J Clin Oncol. 2021; 26: 1784-1792https://doi.org/10.1007/s10147-021-02015-6
- The FEN1 E359K germline mutation disrupts the FEN1-WRN interaction and FEN1 GEN activity, causing aneuploidy-associated cancers.Oncogene. 2015; 34: 902-911https://doi.org/10.1038/onc.2014.19
- Primary hepatocellular neoplasms in a MODY3 family with a novel HNF1A germline mutation.J Hepatol. 2013; 59: 904-907https://doi.org/10.1016/j.jhep.2013.05.024
- Identification of a Novel Pathogenic Germline KDR Variant in Melanoma.Clin Cancer Res. 2016; 22: 2377-2385https://doi.org/10.1158/1078-0432.CCR-15-1811
- Familial gastrointestinal stromal tumours with germline mutation of the KIT gene.Nat Genet. 1998; 19: 323-324https://doi.org/10.1038/1209
- Integrative genomics identifies LMO1 as a neuroblastoma oncogene.Nature. 2011; 469: 216-220https://doi.org/10.1038/nature09609
- Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas.Nat Genet. 2014; 46: 182-187https://doi.org/10.1038/ng.2855
- Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma.Nat Genet. 2011; 43: 663-667
- PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene.Nat Genet. 2007; 39: 165-167https://doi.org/10.1038/ng1959
- PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor.Gastroenterology. 2004; 126: 318-321https://doi.org/10.1053/j.gastro.2003.10.079
- Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma.Am J Hum Genet. 2004; 74: 761-764https://doi.org/10.1086/383253
- A DNA repair variant in POLQ (c.-1060A > G) is associated to hereditary breast cancer patients: a case-control study.BMC Cancer. 2014; 14: 850https://doi.org/10.1186/1471-2407-14-850
- Adult onset and atypical presentation of hemophagocytic lymphohistiocytosis in siblings carrying PRF1 mutations.Blood. 2002; 100: 2266-2267https://doi.org/10.1182/blood-2002-04-1030
- Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in RAD51C and RAD51D.J Natl Cancer Inst. 2020; 112: 1242-1250https://doi.org/10.1093/jnci/djaa030
- Clinical implications of germline mutations in breast cancer genes: RECQL.Breast Cancer Res Treat. 2019; 174: 553-560https://doi.org/10.1007/s10549-018-05096-6
- Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome.Am J Hum Genet. 2010; 86: 279-284https://doi.org/10.1016/j.ajhg.2010.01.013
- Familial occurrence of schwannomas and malignant rhabdoid tumour associated with a duplication in SMARCB1.J Med Genet. 2009; 46: 68-72https://doi.org/10.1136/jmg.2008.060152
- Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas.Nat Genet. 2013; 45: 295-298https://doi.org/10.1038/ng.2552
- Identification of a novel germline SPOP mutation in a family with hereditary prostate cancer.Prostate. 2014; 74: 983-990https://doi.org/10.1002/pros.22818
- Loss of SUFU function in familial multiple meningioma.Am J Hum Genet. 2012; 91: 520-526https://doi.org/10.1016/j.ajhg.2012.07.015
- TERT promoter mutations in familial and sporadic melanoma.Science. 2013; 339: 959-961https://doi.org/10.1126/science.1230062
- Review: the Contribution of both Nature and Nurture to Carcinogenesis and Progression in Solid Tumours.Cancer Microenviron. 2016; 9: 63-69https://doi.org/10.1007/s12307-016-0183-4
- Familial Risk and Heritability of Cancer Among Twins in Nordic Countries.JAMA. 2016; 315: 68-76https://doi.org/10.1001/jama.2015.17703
- Mengel-From J, et al. Familial Risk and Heritability of Hematologic Malignancies in the Nordic Twin Study of Cancer.Cancers (Basel). 2021; 13: 3023https://doi.org/10.3390/cancers13123023
- The Landscape of the Heritable Cancer Genome.Cancer Res. 2021; 81: 2588-2599https://doi.org/10.1158/0008-5472.CAN-20-3348
- Pan-cancer analysis demonstrates that integrating polygenic risk scores with modifiable risk factors improves risk prediction.Nat Commun. 2020; 11: 6084https://doi.org/10.1038/s41467-020-19600-4
- Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers.J Natl Cancer Inst. 2017; 109: djw302https://doi.org/10.1093/jnci/djw302
- The emerging field of polygenic risk scores and perspective for use in clinical care.Hum Mol Genet. 2020; 29: R165-R176https://doi.org/10.1093/hmg/ddaa136
- Will polygenic risk scores for cancer ever be clinically useful?.NPJ Precis Oncol. 2021; 5: 40https://doi.org/10.1038/s41698-021-00176-1
- A case for expert curation: an overview of cancer curation in the Clinical Genome Resource (ClinGen).Cold Spring Harb Mol Case Stud. 2019; 5: a004739https://doi.org/10.1101/mcs.a004739
- A Novel TP53 Tandem Duplication in a Child with Li-Fraumeni Syndrome.Cold Spring Harb Mol Case Stud. 2022; : a006181https://doi.org/10.1101/mcs.a006181
- The emerging significance of secondary germline testing in cancer genomics.J Pathol. 2018; 244: 610-615https://doi.org/10.1002/path.5031
- Utility of a Cancer Predisposition Screening Tool for Predicting Subsequent Malignant Neoplasms in Childhood Cancer Survivors.J Clin Oncol. 2021; 39: 3207-3216
Article info
Publication history
Published online: September 28, 2022
Identification
Copyright
© 2022 Elsevier Inc. All rights reserved.