Advertisement

Hereditary Cancer and Cancer Predisposition Syndromes

  • Author Footnotes
    1 Present address. Abramson Research Center, Room 714J, 3615 Civic Center Boulevard., Philadelphia, PA, USA
    Erfan Aref-Eshghi
    Footnotes
    1 Present address. Abramson Research Center, Room 714J, 3615 Civic Center Boulevard., Philadelphia, PA, USA
    Affiliations
    Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
    Search for articles by this author
  • Marylin M. Li
    Correspondence
    Corresponding author. Abramson Research Center, Room 716I, 3615 Civic Center Boulevard, Philadelphia, PA.
    Affiliations
    Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
    Search for articles by this author
  • Author Footnotes
    1 Present address. Abramson Research Center, Room 714J, 3615 Civic Center Boulevard., Philadelphia, PA, USA
Published:September 28, 2022DOI:https://doi.org/10.1016/j.yamp.2022.07.002

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Molecular Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rahman N.
        Realizing the promise of cancer predisposition genes.
        Nature. 2014; 505: 302-308https://doi.org/10.1038/nature12981
        • Rodriguez-Galindo C.
        • Orbach D.B.
        • VanderVeen D.
        Retinoblastoma.
        Pediatr Clin North Am. 2015; 62: 201-223
        • Schwermer M.
        • Hiber M.
        • Dreesmann S.
        • et al.
        Comprehensive characterization of RB1 mutant and MYCN amplified retinoblastoma cell lines.
        Exp Cell Res. 2019; 375: 92-99https://doi.org/10.1016/j.yexcr.2018.12.018
        • Hill D.A.
        • Ivanovich J.
        • Priest J.R.
        • et al.
        DICER1 mutations in familial pleuropulmonary blastoma.
        Science. 2009; 325: 965https://doi.org/10.1126/science.1174334
        • Abbo O.
        • Pinnagoda K.
        • Brouchet L.
        • et al.
        Wilms tumor, pleuropulmonary blastoma, and DICER1: case report and literature review.
        World J Surg Oncol. 2018; 16: 164https://doi.org/10.1186/s12957-018-1469-4
        • González I.A.
        • Stewart D.R.
        • Schultz K.A.P.
        • et al.
        DICER1 tumor predisposition syndrome: an evolving story initiated with the pleuropulmonary blastoma.
        Mod Pathol. 2022; 35: 4-22https://doi.org/10.1038/s41379-021-00905-8
        • Klein S.
        • Lee H.
        • Ghahremani S.
        • et al.
        Expanding the phenotype of mutations in DICER1: mosaic missense mutations in the RNase IIIb domain of DICER1 cause GLOW syndrome.
        J Med Genet. 2014; 51: 294-302https://doi.org/10.1136/jmedgenet-2013-101943
        • Klein S.D.
        • Martinez-Agosto J.A.
        Hotspot Mutations in DICER1 Causing GLOW Syndrome-Associated Macrocephaly via Modulation of Specific microRNA Populations Result in the Activation of PI3K/ATK/mTOR Signaling.
        Microrna. 2020; 9: 70-80
        • de Kock L.
        • Wang Y.C.
        • Revil T.
        • et al.
        High-sensitivity sequencing reveals multi-organ somatic mosaicism causing DICER1 syndrome.
        J Med Genet. 2016; 53: 43-52https://doi.org/10.1136/jmedgenet-2015-103428
        • Gröbner S.N.
        • Worst B.C.
        • Weischenfeldt J.
        • et al.
        The landscape of genomic alterations across childhood cancers.
        Nature. 2018; 555: 321-327https://doi.org/10.1038/nature25480
        • Amadou A.
        • Achatz M.I.W.
        • Hainaut P.
        Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li-Fraumeni syndrome.
        Curr Opin Oncol. 2018; 30: 23-29https://doi.org/10.1097/CCO.0000000000000423
        • Winter G.
        • Kirschner-Schwabe R.
        • Groeneveld-Krentz S.
        • et al.
        Clinical and genetic characteristics of children with acute lymphoblastic leukemia and Li-Fraumeni syndrome.
        Leukemia. 2021; 35: 1475-1479https://doi.org/10.1038/s41375-021-01163-y
        • Olivier M.
        • Hollstein M.
        • Hainaut P.
        TP53 mutations in human cancers: origins, consequences, and clinical use.
        Cold Spring Harb Perspect Biol. 2010; 2: a001008https://doi.org/10.1101/cshperspect.a001008
        • Willis A.
        • Jung E.J.
        • Wakefield T.
        • et al.
        Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes.
        Oncogene. 2004; 23: 2330-2338https://doi.org/10.1038/sj.onc.1207396
        • Samadder N.J.
        • Giridhar K.V.
        • Baffy N.
        • et al.
        Hereditary Cancer Syndromes-A Primer on Diagnosis and Management: Part 1: Breast-Ovarian Cancer Syndromes.
        Mayo Clin Proc. 2019; 94: 1084-1098https://doi.org/10.1016/j.mayocp.2019.02.017
        • Kuchenbaecker K.B.
        • Hopper J.L.
        • Barnes D.R.
        • et al.
        Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers.
        JAMA. 2017; 317: 2402-2416https://doi.org/10.1001/jama.2017.7112
        • Mavaddat N.
        • Barrowdale D.
        • Andrulis I.L.
        • et al.
        Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).
        Cancer Epidemiol Biomarkers Prev. 2012; 21: 134-147https://doi.org/10.1158/1055-9965.EPI-11-0775
        • Venkitaraman A.R.
        How do mutations affecting the breast cancer genes BRCA1 and BRCA2 cause cancer susceptibility?.
        DNA Repair (Amst). 2019; 81: 102668https://doi.org/10.1016/j.dnarep.2019.102668
        • Huang K.L.
        • Mashl R.J.
        • Wu Y.
        • et al.
        Pathogenic Germline Variants in 10,389 Adult Cancers.
        Cell. 2018; 173: 355-370.e14
        • Samadder N.J.
        • Baffy N.
        • Giridhar K.V.
        • et al.
        Hereditary Cancer Syndromes-A Primer on Diagnosis and Management, Part 2: Gastrointestinal Cancer Syndromes.
        Mayo Clin Proc. 2019; 94: 1099-1116https://doi.org/10.1016/j.mayocp.2019.01.042
        • Dinarvand P.
        • Davaro E.P.
        • Doan J.V.
        • et al.
        Familial Adenomatous Polyposis Syndrome: An Update and Review of Extraintestinal Manifestations.
        Arch Pathol Lab Med. 2019; 143: 1382-1398https://doi.org/10.5858/arpa.2018-0570-RA
        • Hankey W.
        • Frankel W.L.
        • Groden J.
        Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting.
        Cancer Metastasis Rev. 2018; 37: 159-172https://doi.org/10.1007/s10555-017-9725-6
        • Leoz M.L.
        • Carballal S.
        • Moreira L.
        • et al.
        The genetic basis of familial adenomatous polyposis and its implications for clinical practice and risk management.
        Appl Clin Genet. 2015; 8: 95-107https://doi.org/10.2147/TACG.S51484
        • Sandru F.
        • Petca A.
        • Dumitrascu M.C.
        • et al.
        Peutz-Jeghers syndrome: Skin manifestations and endocrine anomalies (Review).
        Exp Ther Med. 2021; 22: 1387https://doi.org/10.3892/etm.2021.10823
        • Pilarski R.
        PTEN Hamartoma Tumor Syndrome: A Clinical Overview.
        Cancers (Basel). 2019; 11: 844https://doi.org/10.3390/cancers11060844
        • Sinicrope F.A.
        Lynch Syndrome-Associated Colorectal Cancer.
        N Engl J Med. 2018; 379: 764-773https://doi.org/10.1056/NEJMcp1714533
        • Wimmer K.
        • Kratz C.P.
        • Vasen H.F.
        • et al.
        Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium 'care for CMMRD' (C4CMMRD).
        J Med Genet. 2014; 51: 355-365https://doi.org/10.1136/jmedgenet-2014-102284
        • Swerdlow A.J.
        • Schoemaker M.J.
        • Higgins C.D.
        • et al.
        Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study.
        J Natl Cancer Inst. 2005; 97: 1204-1210https://doi.org/10.1093/jnci/dji240
        • Kwon A.
        • Hyun S.E.
        • Jung M.K.
        • et al.
        Risk of Gonadoblastoma Development in Patients with Turner Syndrome with Cryptic Y Chromosome.
        Mater Horm Cancer. 2017; 8: 166-173https://doi.org/10.1007/s12672-017-0291-8
        • Hitzler J.K.
        • Zipursky A.
        Origins of leukaemia in children with Down syndrome.
        Nat Rev Cancer. 2005; 5: 11-20https://doi.org/10.1038/nrc1525
        • Wechsler J.
        • Greene M.
        • McDevitt M.A.
        • et al.
        Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome.
        Nat Genet. 2002; 32: 148-152https://doi.org/10.1038/ng955
        • Chou S.T.
        • Opalinska J.B.
        • Yao Y.
        • et al.
        Trisomy 21 enhances human fetal erythro-megakaryocytic development.
        Blood. 2008; 112: 4503-4506https://doi.org/10.1182/blood-2008-05-157859
        • Gruber T.A.
        • Downing J.R.
        The biology of pediatric acute megakaryoblastic leukemia.
        Blood. 2015; 126: 943-949https://doi.org/10.1182/blood-2015-05-567859
        • Kubota Y.
        • Uryu K.
        • Ito T.
        • et al.
        Integrated genetic and epigenetic analysis revealed heterogeneity of acute lymphoblastic leukemia in Down syndrome.
        Cancer Sci. 2019; 110: 3358-3367https://doi.org/10.1111/cas.14160
        • Ganmore I.
        • Smooha G.
        • Izraeli S.
        Constitutional aneuploidy and cancer predisposition.
        Hum Mol Genet. 2009; 18: R84-R93https://doi.org/10.1093/hmg/ddp084
        • Pócza T.
        • Grolmusz V.K.
        • Papp J.
        • et al.
        Germline Structural Variations in Cancer Predisposition Genes.
        Front Genet. 2021; 12: 634217https://doi.org/10.3389/fgene.2021.634217
        • Panani A.D.
        Is there an association with constitutional structural chromosomal abnormalities and hematologic neoplastic process? A short review.
        Ann Hematol. 2009; 88: 293-299https://doi.org/10.1007/s00277-008-0672-8
        • Schoemaker M.J.
        • Jones M.E.
        • Higgins C.D.
        • et al.
        Mortality and cancer incidence in carriers of constitutional t(11;22)(q23;q11) translocations: A prospective study.
        Int J Cancer. 2019; 145: 1493-1498https://doi.org/10.1002/ijc.32031
        • Harrison C.J.
        • Schwab C.
        Constitutional abnormalities of chromosome 21 predispose to iAMP21-acute lymphoblastic leukaemia.
        Eur J Med Genet. 2016; 59: 162-165https://doi.org/10.1016/j.ejmg.2016.01.006
        • Wang K.H.
        • Kupa J.
        • Duffy K.A.
        • et al.
        Diagnosis and Management of Beckwith-Wiedemann Syndrome.
        Front Pediatr. 2020; 7: 562https://doi.org/10.3389/fped.2019.00562
        • Dunnett-Kane V.
        • Burkitt-Wright E.
        • Blackhall F.H.
        • et al.
        Germline and sporadic cancers driven by the RAS pathway: parallels and contrasts.
        Ann Oncol. 2020; 31: 873-883https://doi.org/10.1016/j.annonc.2020.03.291
        • Wilson B.N.
        • John A.M.
        • Handler M.Z.
        • et al.
        Neurofibromatosis type 1: New developments in genetics and treatment.
        J Am Acad Dermatol. 2021; 84: 1667-1676https://doi.org/10.1016/j.jaad.2020.07.105
        • Coy S.
        • Rashid R.
        • Stemmer-Rachamimov A.
        • et al.
        An update on the CNS manifestations of neurofibromatosis type 2.
        Acta Neuropathol. 2020; 139: 643-665https://doi.org/10.1007/s00401-019-02029-5
        • Tajan M.
        • Paccoud R.
        • Branka S.
        • et al.
        The RASopathy Family: Consequences of Germline Activation of the RAS/MAPK Pathway.
        Endocr Rev. 2018; 39: 676-700https://doi.org/10.1210/er.2017-00232
        • Wilson D.B.
        • Link D.C.
        • Mason P.J.
        • et al.
        Inherited bone marrow failure syndromes in adolescents and young adults.
        Ann Med. 2014; 46: 353-363https://doi.org/10.3109/07853890.2014.915579
        • Fiesco-Roa M.O.
        • Giri N.
        • McReynolds L.J.
        • et al.
        Genotype-phenotype associations in Fanconi anemia: A literature review.
        Blood Rev. 2019; 37: 100589https://doi.org/10.1016/j.blre.2019.100589
        • Triemstra J.
        • Pham A.
        • Rhodes L.
        • et al.
        A Review of Fanconi Anemia for the Practicing Pediatrician.
        Pediatr Ann. 2015; 44: 444-445
        • Moreno O.M.
        • Paredes A.C.
        • Suarez-Obando F.
        • et al.
        An update on Fanconi anemia: Clinical, cytogenetic and molecular approaches (Review).
        Biomed Rep. 2021; 15: 74https://doi.org/10.3892/br.2021.1450
        • Taylor A.M.R.
        • Rothblum-Oviatt C.
        • Ellis N.A.
        • et al.
        Chromosome instability syndromes.
        Nat Rev Dis Primers. 2019; 5: 64https://doi.org/10.1038/s41572-019-0113-0
        • Zhang J.
        • Walsh M.F.
        • Wu G.
        • et al.
        Germline Mutations in Predisposition Genes in Pediatric Cancer.
        N Engl J Med. 2015; 373: 2336-2346https://doi.org/10.1056/NEJMoa1508054
        • Schrader K.A.
        • Cheng D.T.
        • Joseph V.
        • et al.
        Germline Variants in Targeted Tumor Sequencing Using Matched Normal DNA.
        JAMA Oncol. 2016; 2: 104-111https://doi.org/10.1001/jamaoncol.2015.5208
        • Mandelker D.
        • Zhang L.
        • Kemel Y.
        • et al.
        Mutation Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing.
        JAMA. 2017; 318: 825-835https://doi.org/10.1001/jama.2017.11137
        • Lowery M.A.
        • Wong W.
        • Jordan E.J.
        • et al.
        Prospective Evaluation of Germline Alterations in Patients With Exocrine Pancreatic Neoplasms.
        J Natl Cancer Inst. 2018; 110: 1067-1074
        • Klco J.M.
        • Mullighan C.G.
        Advances in germline predisposition to acute leukaemias and myeloid neoplasms.
        Nat Rev Cancer. 2021; 21: 122-137https://doi.org/10.1038/s41568-020-00315-z
        • Feurstein S.
        • Godley L.A.
        Germline ETV6 mutations and predisposition to hematological malignancies.
        Int J Hematol. 2017; 106: 189-195https://doi.org/10.1007/s12185-017-2259-4
        • Di Paola J.
        • Porter C.C.
        ETV6-related thrombocytopenia and leukemia predisposition.
        Blood. 2019; 134: 663-667https://doi.org/10.1182/blood.2019852418
        • Noris P.
        • Favier R.
        • Alessi M.C.
        • et al.
        ANKRD26-related thrombocytopenia and myeloid malignancies.
        Blood. 2013; 122 (–1989): 1987
        • Simon L.
        • Spinella J.F.
        • Yao C.Y.
        • et al.
        High frequency of germline RUNX1 mutations in patients with RUNX1-mutated AML.
        Blood. 2020; 135: 1882-1886https://doi.org/10.1182/blood.2019003357
        • Abida W.
        • Armenia J.
        • Gopalan A.
        • et al.
        Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making.
        JCO Precis Oncol. 2017; 2017 (PO.17): 00029https://doi.org/10.1200/PO.17.00029
        • Carlo M.I.
        • Mukherjee S.
        • Mandelker D.
        • et al.
        Prevalence of Germline Mutations in Cancer Susceptibility Genes in Patients with Advanced Renal Cell Carcinoma.
        JAMA Oncol. 2018; 4: 1228-1235https://doi.org/10.1001/jamaoncol.2018.1986
        • Carlo M.I.
        • Ravichandran V.
        • Srinavasan P.
        • et al.
        Cancer Susceptibility Mutations in Patients with Urothelial Malignancies.
        J Clin Oncol. 2020; 38: 406-414https://doi.org/10.1200/JCO.19.01395
        • Mossé Y.P.
        • Laudenslager M.
        • Longo L.
        • et al.
        Identification of ALK as a major familial neuroblastoma predisposition gene.
        Nature. 2008; 455: 930-935https://doi.org/10.1038/nature07261
        • Koochekpour S.
        Androgen receptor signaling and mutations in prostate cancer.
        Asian J Androl. 2010; 12: 639-657https://doi.org/10.1038/aja.2010.89
        • Shattuck T.M.
        • Välimäki S.
        • Obara T.
        • et al.
        Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma.
        N Engl J Med. 2003; 349: 1722-1729https://doi.org/10.1056/NEJMoa031237
        • Smith M.L.
        • Cavenagh J.D.
        • Lister T.A.
        • et al.
        Mutation of CEBPA in familial acute myeloid leukemia.
        N Engl J Med. 2004; 351: 2403-2407https://doi.org/10.1056/NEJMoa041331
        • Polprasert C.
        • Schulze I.
        • Sekeres M.A.
        • et al.
        Inherited and Somatic Defects in DDX41 in Myeloid Neoplasms.
        Cancer Cell. 2015; 27: 658-670https://doi.org/10.1016/j.ccell.2015.03.017
        • Ikeda K.
        • Nomori H.
        • Mori T.
        • et al.
        Novel germline mutation: EGFR V843I in patient with multiple lung adenocarcinomas and family members with lung cancer.
        Ann Thorac Surg. 2008; 85: 1430-1432https://doi.org/10.1016/j.athoracsur.2007.10.012
        • McInerney-Leo A.M.
        • Chew H.Y.
        • Inglis P.L.
        • et al.
        Germline ERBB3 mutation in familial non-small-cell lung carcinoma: expanding ErbB's role in oncogenesis.
        Hum Mol Genet. 2021; 30: 2393-2401https://doi.org/10.1093/hmg/ddab172
        • Abe K.
        • Kitago M.
        • Kitagawa Y.
        • et al.
        Hereditary pancreatic cancer.
        Int J Clin Oncol. 2021; 26: 1784-1792https://doi.org/10.1007/s10147-021-02015-6
        • Chung L.
        • Onyango D.
        • Guo Z.
        • et al.
        The FEN1 E359K germline mutation disrupts the FEN1-WRN interaction and FEN1 GEN activity, causing aneuploidy-associated cancers.
        Oncogene. 2015; 34: 902-911https://doi.org/10.1038/onc.2014.19
        • Willson J.S.
        • Godwin T.D.
        • Wiggins G.A.
        • et al.
        Primary hepatocellular neoplasms in a MODY3 family with a novel HNF1A germline mutation.
        J Hepatol. 2013; 59: 904-907https://doi.org/10.1016/j.jhep.2013.05.024
        • Silva I.P.
        • Salhi A.
        • Giles K.M.
        • et al.
        Identification of a Novel Pathogenic Germline KDR Variant in Melanoma.
        Clin Cancer Res. 2016; 22: 2377-2385https://doi.org/10.1158/1078-0432.CCR-15-1811
        • Nishida T.
        • Hirota S.
        • Taniguchi M.
        • et al.
        Familial gastrointestinal stromal tumours with germline mutation of the KIT gene.
        Nat Genet. 1998; 19: 323-324https://doi.org/10.1038/1209
        • Wang K.
        • Diskin S.J.
        • Zhang H.
        • et al.
        Integrative genomics identifies LMO1 as a neuroblastoma oncogene.
        Nature. 2011; 469: 216-220https://doi.org/10.1038/nature09609
        • Piotrowski A.
        • Xie J.
        • Liu Y.F.
        • et al.
        Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas.
        Nat Genet. 2014; 46: 182-187https://doi.org/10.1038/ng.2855
        • Comino-Méndez I.
        • Gracia-Aznárez F.J.
        • Schiavi F.
        • et al.
        Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma.
        Nat Genet. 2011; 43: 663-667
        • Rahman N.
        • Seal S.
        • Thompson D.
        • et al.
        PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene.
        Nat Genet. 2007; 39: 165-167https://doi.org/10.1038/ng1959
        • Chompret A.
        • Kannengiesser C.
        • Barrois M.
        • et al.
        PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor.
        Gastroenterology. 2004; 126: 318-321https://doi.org/10.1053/j.gastro.2003.10.079
        • Trochet D.
        • Bourdeaut F.
        • Janoueix-Lerosey I.
        • et al.
        Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma.
        Am J Hum Genet. 2004; 74: 761-764https://doi.org/10.1086/383253
        • Brandalize A.P.
        • Schüler-Faccini L.
        • Hoffmann J.S.
        • et al.
        A DNA repair variant in POLQ (c.-1060A > G) is associated to hereditary breast cancer patients: a case-control study.
        BMC Cancer. 2014; 14: 850https://doi.org/10.1186/1471-2407-14-850
        • Clementi R.
        • Emmi L.
        • Maccario R.
        • et al.
        Adult onset and atypical presentation of hemophagocytic lymphohistiocytosis in siblings carrying PRF1 mutations.
        Blood. 2002; 100: 2266-2267https://doi.org/10.1182/blood-2002-04-1030
        • Yang X.
        • Song H.
        • Leslie G.
        • et al.
        Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in RAD51C and RAD51D.
        J Natl Cancer Inst. 2020; 112: 1242-1250https://doi.org/10.1093/jnci/djaa030
        • Bowden A.R.
        • Tischkowitz M.
        Clinical implications of germline mutations in breast cancer genes: RECQL.
        Breast Cancer Res Treat. 2019; 174: 553-560https://doi.org/10.1007/s10549-018-05096-6
        • Schneppenheim R.
        • Frühwald M.C.
        • Gesk S.
        • et al.
        Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome.
        Am J Hum Genet. 2010; 86: 279-284https://doi.org/10.1016/j.ajhg.2010.01.013
        • Swensen J.J.
        • Keyser J.
        • Coffin C.M.
        • et al.
        Familial occurrence of schwannomas and malignant rhabdoid tumour associated with a duplication in SMARCB1.
        J Med Genet. 2009; 46: 68-72https://doi.org/10.1136/jmg.2008.060152
        • Smith M.J.
        • O'Sullivan J.
        • Bhaskar S.S.
        • et al.
        Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas.
        Nat Genet. 2013; 45: 295-298https://doi.org/10.1038/ng.2552
        • Zuhlke K.A.
        • Johnson A.M.
        • Tomlins S.A.
        • et al.
        Identification of a novel germline SPOP mutation in a family with hereditary prostate cancer.
        Prostate. 2014; 74: 983-990https://doi.org/10.1002/pros.22818
        • Aavikko M.
        • Li S.P.
        • Saarinen S.
        • et al.
        Loss of SUFU function in familial multiple meningioma.
        Am J Hum Genet. 2012; 91: 520-526https://doi.org/10.1016/j.ajhg.2012.07.015
        • Horn S.
        • Figl A.
        • Rachakonda P.S.
        • et al.
        TERT promoter mutations in familial and sporadic melanoma.
        Science. 2013; 339: 959-961https://doi.org/10.1126/science.1230062
        • Hyndman I.J.
        Review: the Contribution of both Nature and Nurture to Carcinogenesis and Progression in Solid Tumours.
        Cancer Microenviron. 2016; 9: 63-69https://doi.org/10.1007/s12307-016-0183-4
        • Mucci L.A.
        • Hjelmborg J.B.
        • Harris J.R.
        • et al.
        Familial Risk and Heritability of Cancer Among Twins in Nordic Countries.
        JAMA. 2016; 315: 68-76https://doi.org/10.1001/jama.2015.17703
        • Clemmensen S.B.
        • Harris J.R.
        Mengel-From J, et al. Familial Risk and Heritability of Hematologic Malignancies in the Nordic Twin Study of Cancer.
        Cancers (Basel). 2021; 13: 3023https://doi.org/10.3390/cancers13123023
        • Fanfani V.
        • Citi L.
        • Harris A.L.
        • et al.
        The Landscape of the Heritable Cancer Genome.
        Cancer Res. 2021; 81: 2588-2599https://doi.org/10.1158/0008-5472.CAN-20-3348
        • Kachuri L.
        • Graff R.E.
        • Smith-Byrne K.
        • et al.
        Pan-cancer analysis demonstrates that integrating polygenic risk scores with modifiable risk factors improves risk prediction.
        Nat Commun. 2020; 11: 6084https://doi.org/10.1038/s41467-020-19600-4
        • Kuchenbaecker K.B.
        • McGuffog L.
        • Barrowdale D.
        • et al.
        Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers.
        J Natl Cancer Inst. 2017; 109: djw302https://doi.org/10.1093/jnci/djw302
        • Yanes T.
        • McInerney-Leo A.M.
        • Law M.H.
        • et al.
        The emerging field of polygenic risk scores and perspective for use in clinical care.
        Hum Mol Genet. 2020; 29: R165-R176https://doi.org/10.1093/hmg/ddaa136
        • Sud A.
        • Turnbull C.
        • Houlston R.
        Will polygenic risk scores for cancer ever be clinically useful?.
        NPJ Precis Oncol. 2021; 5: 40https://doi.org/10.1038/s41698-021-00176-1
        • Ritter D.I.
        • Rao S.
        • Kulkarni S.
        • et al.
        A case for expert curation: an overview of cancer curation in the Clinical Genome Resource (ClinGen).
        Cold Spring Harb Mol Case Stud. 2019; 5: a004739https://doi.org/10.1101/mcs.a004739
        • Xu F.
        • Aref-Eshghi E.
        • Wu J.
        • et al.
        A Novel TP53 Tandem Duplication in a Child with Li-Fraumeni Syndrome.
        Cold Spring Harb Mol Case Stud. 2022; : a006181https://doi.org/10.1101/mcs.a006181
        • Mandelker D.
        • Zhang L.
        The emerging significance of secondary germline testing in cancer genomics.
        J Pathol. 2018; 244: 610-615https://doi.org/10.1002/path.5031
        • Cullinan N.
        • Schiller I.
        • Di Giuseppe G.
        • et al.
        Utility of a Cancer Predisposition Screening Tool for Predicting Subsequent Malignant Neoplasms in Childhood Cancer Survivors.
        J Clin Oncol. 2021; 39: 3207-3216