Advertisement
Review Article| Volume 5, ISSUE 1, P85-108, November 2022

Applications of Long-Read Sequencing Technology in Clinical Genomics

  • Shivaprasad H. Sathyanarayana
    Affiliations
    Department of Pathology and Laboratory Medicine, Clinical Genomics and Advanced Technology Laboratory, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
    Search for articles by this author
  • Sophie J. Deharvengt
    Affiliations
    Department of Pathology and Laboratory Medicine, Clinical Genomics and Advanced Technology Laboratory, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
    Search for articles by this author
  • Guohong Huang
    Affiliations
    Department of Pathology and Laboratory Medicine, Clinical Genomics and Advanced Technology Laboratory, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
    Search for articles by this author
  • Rachael E. Barney
    Affiliations
    Department of Pathology and Laboratory Medicine, Clinical Genomics and Advanced Technology Laboratory, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
    Search for articles by this author
  • Parth S. Shah
    Affiliations
    Department of Pathology and Laboratory Medicine, Clinical Genomics and Advanced Technology Laboratory, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
    Search for articles by this author
  • Joel A. Lefferts
    Correspondence
    Corresponding author.
    Affiliations
    Department of Pathology and Laboratory Medicine, Clinical Genomics and Advanced Technology Laboratory, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Molecular Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Shendure J.
        • Balasubramanian S.
        • Church G.M.
        • et al.
        DNA sequencing at 40: Past, present and future.
        Nature. 2017; 550https://doi.org/10.1038/nature24286
        • Gilissen C.
        • Hoischen A.
        • Brunner H.G.
        • et al.
        Unlocking Mendelian disease using exome sequencing.
        Genome Biol. 2011; 12https://doi.org/10.1186/gb-2011-12-9-228
        • Goodwin S.
        • McPherson J.D.
        • McCombie W.R.
        Coming of age: Ten years of next-generation sequencing technologies.
        Nat Rev Genet. 2016; 17https://doi.org/10.1038/nrg.2016.49
        • Sudmant P.H.
        • Rausch T.
        • Gardner E.J.
        • et al.
        An integrated map of structural variation in 2,504 human genomes.
        Nature. 2015; 526https://doi.org/10.1038/nature15394
        • Sudmant P.H.
        • Mallick S.
        • Nelson B.J.
        • et al.
        Global diversity, population stratification, and selection of human copy-number variation.
        Science (1979). 2015; : 349https://doi.org/10.1126/science.aab3761
        • Ng S.B.
        • Bigham A.W.
        • Buckingham K.J.
        • et al.
        Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome.
        Nat Genet. 2010; 42https://doi.org/10.1038/ng.646
        • Kircher M.
        • Witten D.M.
        • Jain P.
        • et al.
        A general framework for estimating the relative pathogenicity of human genetic variants.
        Nat Genet. 2014; 46https://doi.org/10.1038/ng.2892
        • Simonson T.S.
        • Yang Y.
        • Huff C.D.
        • et al.
        Genetic evidence for high-altitude adaptation in Tibet.
        Science (1979). 2010; : 329https://doi.org/10.1126/science.1189406
      1. Sudmant PH, Kitzman JO, Antonacci F, et al. Diversity of human copy number variation and multicopy genes. Science (1979). 2010;330(6004). doi:10.1126/science.1197005

        • de Koning APJ
        • Gu W.
        • Castoe T.A.
        • et al.
        Repetitive elements may comprise over Two-Thirds of the human genome.
        PLoS Genet. 2011; 7https://doi.org/10.1371/journal.pgen.1002384
        • Treangen T.J.
        • Salzberg S.L.
        Repetitive DNA and next-generation sequencing: Computational challenges and solutions.
        Nat Rev Genet. 2012; 13https://doi.org/10.1038/nrg3117
        • Ashley E.A.
        Towards precision medicine.
        Nat Rev Genet. 2016; 17https://doi.org/10.1038/nrg.2016.86
        • Chaisson M.J.P.
        • Wilson R.K.
        • Eichler E.E.
        Genetic variation and the de novo assembly of human genomes.
        Nat Rev Genet. 2015; 16https://doi.org/10.1038/nrg3933
        • Seo J.S.
        • Rhie A.
        • Kim J.
        • et al.
        De novo assembly and phasing of a Korean human genome.
        Nature. 2016; 538https://doi.org/10.1038/nature20098
        • Shi L.
        • Guo Y.
        • Dong C.
        • et al.
        Long-read sequencing and de novo assembly of a Chinese genome.
        Nat Commun. 2016; 7https://doi.org/10.1038/ncomms12065
        • Smith A.M.
        • Jain M.
        • Mulroney L.
        • et al.
        Reading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencing.
        PLoS One. 2019; 14https://doi.org/10.1371/journal.pone.0216709
        • Nurk S.
        • Koren S.
        • Rhie A.
        • et al.
        The complete sequence of a human genome.
        Science (1979). 2022; 2376
        • van Dijk E.L.
        • Jaszczyszyn Y.
        • Naquin D.
        • et al.
        The Third Revolution in Sequencing Technology.
        Trends Genet. 2018; 34https://doi.org/10.1016/j.tig.2018.05.008
        • Schadt E.E.
        • Turner S.
        • Kasarskis A.
        A window into third-generation sequencing.
        Hum Mol Genet. 2010; 19https://doi.org/10.1093/hmg/ddq416
        • Chaisson M.J.P.
        • Huddleston J.
        • Dennis M.Y.
        • et al.
        Resolving the complexity of the human genome using single-molecule sequencing.
        Nature. 2015; 517https://doi.org/10.1038/nature13907
        • Pollard M.O.
        • Gurdasani D.
        • Mentzer A.J.
        • et al.
        Long reads: Their purpose and place.
        Hum Mol Genet. 2018; 27https://doi.org/10.1093/hmg/ddy177
        • Zhu X.
        • Yan S.
        • Yuan F.
        • et al.
        The Applications of Nanopore Sequencing Technology in Pathogenic Microorganism Detection.
        Can J Infect Dis Med Microbiol. 2020; 2020: 1-8
        • Hoang M.T.V.
        • Irinyi L.
        • Hu Y.
        • et al.
        Long-Reads-Based Metagenomics in Clinical Diagnosis With a Special Focus on Fungal Infections.
        Front Microbiol. 2022; 12https://doi.org/10.3389/fmicb.2021.708550
        • Aneichyk T.
        • Hendriks W.T.
        • Yadav R.
        • et al.
        Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly.
        Cell. 2018; 172https://doi.org/10.1016/j.cell.2018.02.011
        • Ishiura H.
        • Doi K.
        • Mitsui J.
        • et al.
        Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy.
        Nat Genet. 2018; 50https://doi.org/10.1038/s41588-018-0067-2
        • Zeng S.
        • Zhang M.Y.
        • Wang X.J.
        • et al.
        Long-read sequencing identified intronic repeat expansions in SAMD12 from Chinese pedigrees affected with familial cortical myoclonic tremor with epilepsy.
        J Med Genet. 2019; 56https://doi.org/10.1136/jmedgenet-2018-105484
        • Ardui S.
        • Ameur A.
        • Vermeesch J.R.
        • et al.
        Single molecule real-time (SMRT) sequencing comes of age: Applications and utilities for medical diagnostics.
        Nucleic Acids Res. 2018; 46https://doi.org/10.1093/nar/gky066
        • Tedersoo L.
        • Albertsen M.
        • Anslan S.
        • et al.
        Perspectives and Benefits of High-Throughput Long-Read Sequencing in Microbial Ecology.
        Appl Environ Microbiol. 2021; 87https://doi.org/10.1128/AEM.00626-21
        • Logsdon G.A.
        • Vollger M.R.
        • Eichler E.E.
        Long-read human genome sequencing and its applications.
        Nat Rev Genet. 2020; 21https://doi.org/10.1038/s41576-020-0236-x
        • Eid J.
        • Fehr A.
        • Gray J.
        • et al.
        Real-time DNA sequencing from single polymerase molecules.
        Science (1979). 2009; 323https://doi.org/10.1126/science.1162986
        • Chaisson M.J.P.
        • Sanders A.D.
        • Zhao X.
        • et al.
        Multi-platform discovery of haplotype-resolved structural variation in human genomes.
        Nat Commun. 2019; 10https://doi.org/10.1038/s41467-018-08148-z
        • Vollger M.R.
        • Logsdon G.A.
        • Audano P.A.
        • et al.
        Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads.
        Ann Hum Genet. 2020; 84https://doi.org/10.1111/ahg.12364
        • Wenger A.M.
        • Peluso P.
        • Rowell W.J.
        • et al.
        Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome.
        Nat Biotechnol. 2019; 37https://doi.org/10.1038/s41587-019-0217-9
        • Vollger M.R.
        • Dishuck P.C.
        • Sorensen M.
        • et al.
        Long-read sequence and assembly of segmental duplications.
        Nat Methods. 2019; 16https://doi.org/10.1038/s41592-018-0236-3
        • Eisenstein M.
        Oxford Nanopore announcement sets sequencing sector abuzz.
        Nat Biotechnol. 2012; 30https://doi.org/10.1038/nbt0412-295
        • Deamer D.
        • Akeson M.
        • Branton D.
        Three decades of nanopore sequencing.
        Nat Biotechnol. 2016; 34https://doi.org/10.1038/nbt.3423
        • Jain M.
        • Koren S.
        • Miga K.H.
        • et al.
        Nanopore sequencing and assembly of a human genome with ultra-long reads.
        Nat Biotechnol. 2018; 36https://doi.org/10.1038/nbt.4060
        • Payne A.
        • Holmes N.
        • Rakyan V.
        • et al.
        Bulkvis: A graphical viewer for Oxford nanopore bulk FAST5 files.
        Bioinformatics. 2019; 35https://doi.org/10.1093/bioinformatics/bty841
        • Shafin K.
        • Pesout T.
        • Lorig-Roach R.
        • et al.
        Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes.
        Nat Biotechnol. 2020; 38https://doi.org/10.1038/s41587-020-0503-6
        • Miga K.H.
        • Koren S.
        • Rhie A.
        • et al.
        Telomere-to-telomere assembly of a complete human X chromosome.
        Nature. 2020; 585https://doi.org/10.1038/s41586-020-2547-7
        • Mantere T.
        • Kersten S.
        • Hoischen A.
        Long-read sequencing emerging in medical genetics.
        Front Genet. 2019; 10https://doi.org/10.3389/fgene.2019.00426
        • Kronenberg Z.N.
        • Fiddes I.T.
        • Gordon D.
        • et al.
        High-resolution comparative analysis of great ape genomes.
        Science (1979). 2018; : 360https://doi.org/10.1126/science.aar6343
        • Audano P.A.
        • Sulovari A.
        • Graves-Lindsay T.A.
        • et al.
        Characterizing the Major Structural Variant Alleles of the Human Genome.
        Cell. 2019; 176https://doi.org/10.1016/j.cell.2018.12.019
        • Huddleston J.
        • Chaisson M.J.P.
        • Steinberg K.M.
        • et al.
        Discovery and genotyping of structural variation from long-read haploid genome sequence data.
        Genome Res. 2017; 27https://doi.org/10.1101/gr.214007.116
        • Okubo M.
        • Doi H.
        • Fukai R.
        • et al.
        GGC Repeat Expansion of NOTCH2NLC in Adult Patients with Leukoencephalopathy.
        Ann Neurol. 2019; 86https://doi.org/10.1002/ana.25586
        • Sone J.
        • Mitsuhashi S.
        • Fujita A.
        • et al.
        Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease.
        Nat Genet. 2019; 51https://doi.org/10.1038/s41588-019-0459-y
        • Hsieh P.H.
        • Vollger M.R.
        • Dang V.
        • et al.
        Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes.
        Science (1979). 2019; : 366https://doi.org/10.1126/science.aax2083
        • Amarasinghe S.L.
        • Su S.
        • Dong X.
        • et al.
        Opportunities and challenges in long-read sequencing data analysis.
        Genome Biol. 2020; 21https://doi.org/10.1186/s13059-020-1935-5
        • Pendleton M.
        • Sebra R.
        • Pang A.W.C.
        • et al.
        Assembly and diploid architecture of an individual human genome via single-molecule technologies.
        Nat Methods. 2015; 12https://doi.org/10.1038/nmeth.3454
        • de Coster W.
        • de Rijk P.
        • de Roeck A.
        • et al.
        Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome.
        Genome Res. 2019; 29https://doi.org/10.1101/gr.244939.118
        • Alkan C.
        • Coe B.P.
        • Eichler E.E.
        Genome structural variation discovery and genotyping.
        Nat Rev Genet. 2011; 12: 363-376
        • Kloosterman W.P.
        • Hochstenbach R.
        Deciphering the pathogenic consequences of chromosomal aberrations in human genetic disease.
        Mol Cytogenet. 2014; 7https://doi.org/10.1186/s13039-014-0100-9
        • Tattini L.
        • D’Aurizio R.
        • Magi A.
        Detection of genomic structural variants from next-generation sequencing data.
        Front Bioeng Biotechnol. 2015; 3https://doi.org/10.3389/fbioe.2015.00092
        • Sedlazeck F.J.
        • Lee H.
        • Darby C.A.
        • et al.
        Piercing the dark matter: Bioinformatics of long-range sequencing and mapping.
        Nat Rev Genet. 2018; 19https://doi.org/10.1038/s41576-018-0003-4
        • Leija-Salazar M.
        • Sedlazeck F.J.
        • Toffoli M.
        • et al.
        Evaluation of the detection of GBA missense mutations and other variants using the Oxford Nanopore MinION.
        Mol Genet Genomic Med. 2019; 7https://doi.org/10.1002/mgg3.564
        • Euskirchen P.
        • Bielle F.
        • Labreche K.
        • et al.
        Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing.
        Acta Neuropathol. 2017; 134https://doi.org/10.1007/s00401-017-1743-5
        • Suzuki A.
        • Suzuki M.
        • Mizushima-Sugano J.
        • et al.
        Sequencing and phasing cancer mutations in lung cancers using a long-read portable sequencer.
        DNA Res. 2017; 24https://doi.org/10.1093/dnares/dsx027
        • Norris A.L.
        • Workman R.E.
        • Fan Y.
        • et al.
        Nanopore sequencing detects structural variants in cancer.
        Cancer Biol Ther. 2016; 17https://doi.org/10.1080/15384047.2016.1139236
        • Minervini C.F.
        • Cumbo C.
        • Orsini P.
        • et al.
        TP53 gene mutation analysis in chronic lymphocytic leukemia by nanopore MinION sequencing.
        Diagn Pathol. 2016; 11https://doi.org/10.1186/s13000-016-0550-y
        • Sakamoto Y.
        • Zaha S.
        • Suzuki Y.
        • et al.
        Application of long-read sequencing to the detection of structural variants in human cancer genomes.
        Comput Struct Biotechnol J. 2021; : 19https://doi.org/10.1016/j.csbj.2021.07.030
        • Fujimoto A.
        • Wong J.H.
        • Yoshii Y.
        • et al.
        Whole-genome sequencing with long reads reveals complex structure and origin of structural variation in human genetic variations and somatic mutations in cancer.
        Genome Med. 2021; 13https://doi.org/10.1186/s13073-021-00883-1
        • Valle-Inclan J.E.
        • Stangl C.
        • de Jong A.C.
        • et al.
        Optimizing Nanopore sequencing-based detection of structural variants enables individualized circulating tumor DNA-based disease monitoring in cancer patients.
        Genome Med. 2021; 13https://doi.org/10.1186/s13073-021-00899-7
        • Miller D.E.
        • Sulovari A.
        • Wang T.
        • et al.
        Targeted long-read sequencing identifies missing disease-causing variation.
        Am J Hum Genet. 2021; 108https://doi.org/10.1016/j.ajhg.2021.06.006
        • Aganezov S.
        • Goodwin S.
        • Sherman R.M.
        • et al.
        Comprehensive analysis of structural variants in breast cancer genomes using single-molecule sequencing.
        Genome Res. 2020; 30https://doi.org/10.1101/GR.260497.119
        • Aganezov S.
        • Raphael B.J.
        Reconstruction of clone- And haplotype-specific cancer genome karyotypes from bulk tumor samples.
        Genome Res. 2020; 30https://doi.org/10.1101/GR.256701.119
        • Sakamoto Y.
        • Xu L.
        • Seki M.
        • et al.
        Long read sequencing reveals a novel class of structural aberrations in cancers: Identification and characterization of cancerous local amplifications.
        bioRxiv. 2019; https://doi.org/10.1101/620047
        • Nattestad M.
        • Goodwin S.
        • Ng K.
        • et al.
        Complex rearrangements and oncogene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line.
        Genome Res. 2018; 28https://doi.org/10.1101/gr.231100.117
        • Jiang W.
        • Zhao X.
        • Gabrieli T.
        • et al.
        Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters.
        Nat Commun. 2015; 6https://doi.org/10.1038/ncomms9101
        • Gabrieli T.
        • Sharim H.
        • Fridman D.
        • et al.
        Selective nanopore sequencing of human BRCA1 by Cas9-assisted targeting of chromosome segments (CATCH).
        Nucleic Acids Res. 2018; 46https://doi.org/10.1093/nar/gky411
        • Dutta U.R.
        • Rao S.N.
        • Pidugu V.K.
        • et al.
        Breakpoint mapping of a novel de novo translocation t(X;20)(q11.1;p13) by positional cloning and long read sequencing.
        Genomics. 2019; 111https://doi.org/10.1016/j.ygeno.2018.07.005
        • Mizuguchi T.
        • Suzuki T.
        • Abe C.
        • et al.
        A 12-kb structural variation in progressive myoclonic epilepsy was newly identified by long-read whole-genome sequencing.
        J Hum Genet. 2019; 64https://doi.org/10.1038/s10038-019-0569-5
        • Merker J.D.
        • Wenger A.M.
        • Sneddon T.
        • et al.
        Long-read genome sequencing identifies causal structural variation in a Mendelian disease.
        Genet Med. 2018; 20https://doi.org/10.1038/gim.2017.86
        • Reiner J.
        • Pisani L.
        • Qiao W.
        • et al.
        Cytogenomic identification and long-read single molecule real-time (SMRT) sequencing of a Bardet-Biedl Syndrome 9 (BBS9) deletion.
        npj Genomic Med. 2018; 3https://doi.org/10.1038/s41525-017-0042-3
        • Miao H.
        • Zhou J.
        • Yang Q.
        • et al.
        Long-read sequencing identified a causal structural variant in an exome-negative case and enabled preimplantation genetic diagnosis.
        Hereditas. 2018; 155https://doi.org/10.1186/s41065-018-0069-1
        • Sanchis-Juan A.
        • Stephens J.
        • French C.E.
        • et al.
        Complex structural variants in Mendelian disorders: identification and breakpoint resolution using short- and long-read genome sequencing.
        Genome Med. 2018; 10https://doi.org/10.1186/s13073-018-0606-6
        • Chu C.
        • Borges-Monroy R.
        • Viswanadham V.v.
        • et al.
        Comprehensive identification of transposable element insertions using multiple sequencing technologies.
        Nat Commun. 2021; 12https://doi.org/10.1038/s41467-021-24041-8
        • Hancks D.C.
        • Kazazian H.H.
        Active human retrotransposons: Variation and disease.
        Curr Opin Genet Dev. 2012; 22https://doi.org/10.1016/j.gde.2012.02.006
        • Dupressoir A.
        • Lavialle C.
        • Heidmann T.
        From ancestral infectious retroviruses to bona fide cellular genes: Role of the captured syncytins in placentation.
        Placenta. 2012; 33https://doi.org/10.1016/j.placenta.2012.05.005
        • Chuong E.B.
        • Elde N.C.
        • Feschotte C.
        Regulatory evolution of innate immunity through co-option of endogenous retroviruses.
        Science (1979). 2016; : 351https://doi.org/10.1126/science.aad5497
        • Cordaux R.
        • Batzer M.A.
        The impact of retrotransposons on human genome evolution.
        Nat Rev Genet. 2009; 10https://doi.org/10.1038/nrg2640
        • Gonçalves A.
        • Oliveira J.
        • Coelho T.
        • et al.
        Exonization of an intronic LINE-1 element causing becker muscular dystrophy as a novel mutational mechanism in dystrophin gene.
        Genes (Basel). 2017; 8https://doi.org/10.3390/genes8100253
        • Ewing A.D.
        • Smits N.
        • Sanchez-Luque F.J.
        • et al.
        Nanopore Sequencing Enables Comprehensive Transposable Element Epigenomic Profiling.
        Mol Cell. 2020; 80https://doi.org/10.1016/j.molcel.2020.10.024
        • Maestri S.
        • Maturo M.G.
        • Cosentino E.
        • et al.
        A long-read sequencing approach for direct haplotype phasing in clinical settings.
        Int J Mol Sci. 2020; 21https://doi.org/10.3390/ijms21239177
        • Lescai F.
        • Chiamenti A.M.
        • Codemo A.
        • et al.
        An APOE haplotype associated with decreased 4 expression increases the risk of late onset alzheimer’s disease.
        J Alzheimer’s Dis. 2011; 24https://doi.org/10.3233/JAD-2011-101764
        • Clipperton-Allen A.E.
        • Page D.T.
        Pten haploinsufficient mice show broad brain overgrowth but selective impairments in autism-relevant behavioral tests.
        Hum Mol Genet. 2014; 23: 3490-3505https://doi.org/10.1093/hmg/ddu057
        • Vymetalkova V.
        • Soucek P.
        • Kunicka T.
        • et al.
        Genotype and haplotype analyses of TP53 gene in breast cancer patients: Association with risk and clinical outcomes.
        PLoS One. 2015; 10https://doi.org/10.1371/journal.pone.0134463
        • Williams M.A.
        • McKay G.J.
        • Carson R.
        • et al.
        Age-Related Macular Degeneration-Associated Genes in Alzheimer Disease.
        Am J Geriatr Psychiatry. 2015; 23https://doi.org/10.1016/j.jagp.2015.06.005
        • Pasaniuc B.
        • Rohland N.
        • McLaren P.J.
        • et al.
        Extremely low-coverage sequencing and imputation increases power for genome-wide association studies.
        Nat Genet. 2012; 44https://doi.org/10.1038/ng.2283
        • Ripke S.
        • O’Dushlaine C.
        • Chambert K.
        • et al.
        Genome-wide association analysis identifies 13 new risk loci for schizophrenia.
        Nat Genet. 2013; 45https://doi.org/10.1038/ng.2742
        • Tsoi L.C.
        • Spain S.L.
        • Knight J.
        • et al.
        Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity.
        Nat Genet. 2012; 44https://doi.org/10.1038/ng.2467
        • Nalls M.A.
        • Pankratz N.
        • Lill C.M.
        • et al.
        Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease.
        Nat Genet. 2014; 46
        • Snyder M.W.
        • Adey A.
        • Kitzman J.O.
        • et al.
        Haplotype-resolved genome sequencing: Experimental methods and applications.
        Nat Rev Genet. 2015; 16https://doi.org/10.1038/nrg3903
        • Tewhey R.
        • Bansal V.
        • Torkamani A.
        • et al.
        The importance of phase information for human genomics.
        Nat Rev Genet. 2011; 12https://doi.org/10.1038/nrg2950
        • Goldmann J.M.
        • Wong W.S.W.
        • Pinelli M.
        • et al.
        Erratum to: Parent-of-origin-specific signatures of de novo mutations.
        Nat Genet. 2016; 48 (Nature Genetics. 2018;50(11). doi:10.1038/s41588-018-0226-5): 935-939
        • Laver T.W.
        • Caswell R.C.
        • Moore K.A.
        • et al.
        Pitfalls of haplotype phasing from amplicon-based long-read sequencing.
        Scientific Rep. 2016; 6https://doi.org/10.1038/srep21746
        • Wilbe M.
        • Gudmundsson S.
        • Johansson J.
        • et al.
        A novel approach using long-read sequencing and ddPCR to investigate gonadal mosaicism and estimate recurrence risk in two families with developmental disorders.
        Prenatal Diagn. 2017; 37https://doi.org/10.1002/pd.5156
        • Zhang S.
        • Liang F.
        • Lei C.
        • et al.
        Long-read sequencing and haplotype linkage analysis enabled preimplantation genetic testing for patients carrying pathogenic inversions.
        J Med Genet. 2019; https://doi.org/10.1136/jmedgenet-2018-105976
        • Gudmundsson S.
        • Wilbe M.
        • Ekvall S.
        • et al.
        Revertant mosaicism repairs skin lesions in a patient with keratitis-ichthyosis-deafness syndrome by second-site mutations in connexin 26.
        Hum Mol Genet. 2017; 26https://doi.org/10.1093/hmg/ddx017
        • Proudfoot N.
        Pseudogenes Nat. 1980; 286: 840-841
        • Harrison P.M.
        • Gerstein M.
        Studying Genomes Through the Aeons: Protein Families, Pseudogenes and Proteome Evolution.
        J Mol Biol. 2002; 318: 1155-1174
        • D’Errico I.
        • Gadaleta G.
        • Saccone C.
        Pseudogenes in metazoa: Origin and features.
        Brief Funct Genomics Proteomics. 2004; 3https://doi.org/10.1093/bfgp/3.2.157
        • Pei B.
        • Sisu C.
        • Frankish A.
        • et al.
        The GENCODE pseudogene resource.
        Genome Biol. 2012; 13https://doi.org/10.1186/gb-2012-13-9-r51
        • Mandelker D.
        • Schmidt R.J.
        • Ankala A.
        • et al.
        Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing.
        Genet Med. 2016; 18: 1282-1289
        • Bardaro T.
        • Falco G.
        • Sparago A.
        • et al.
        Two cases of misinterpretation of molecular results in incontinentia pigmenti, and a PCR-based method to discriminate NEMO/IKKγ gene deletion.
        Hum Mutat. 2003; 21https://doi.org/10.1002/humu.10150
        • Claes K.B.M.
        • de Leeneer K.
        Dealing with Pseudogenes in Molecular Diagnostics in the Next-Generation Sequencing Era.
        Methods Mol Biol. 2014; : 303-315
        • Ammar R.
        • Paton T.A.
        • Torti D.
        • et al.
        Long read nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes.
        F1000Res. 2015; 4https://doi.org/10.12688/f1000research.6037.1
        • Qiao W.
        • Yang Y.
        • Sebra R.
        • et al.
        Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6.
        Hum Mutat. 2016; 37https://doi.org/10.1002/humu.22936
        • Borràs D.M.
        • Vossen R.H.A.M.
        • Liem M.
        • et al.
        Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing.
        Hum Mutat. 2017; 38: 870-879https://doi.org/10.1002/humu.23223
        • Buermans H.P.J.
        • Vossen R.H.A.M.
        • Anvar S.Y.
        • et al.
        Flexible and Scalable Full-Length CYP2D6 Long Amplicon PacBio Sequencing.
        Hum Mutat. 2017; 38: 310-316https://doi.org/10.1002/humu.23166
        • Frans G.
        • Meert W.
        • van der Werff Ten Bosch J.
        • et al.
        Conventional and Single-Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene.
        J Mol Diagn. 2018; 20https://doi.org/10.1016/j.jmoldx.2017.10.005
        • Tan A.Y.
        • Michaeel A.
        • Liu G.
        • et al.
        Molecular diagnosis of autosomal dominant polycystic kidney disease using next-generation sequencing.
        J Mol Diagn. 2014; 16https://doi.org/10.1016/j.jmoldx.2013.10.005
        • Stephens Z.
        • Milosevic D.
        • Kipp B.
        • et al.
        PB-Motif—A Method for Identifying Gene/Pseudogene Rearrangements With Long Reads: An Application to CYP21A2 Genotyping.
        Front Genet. 2021; 12https://doi.org/10.3389/fgene.2021.716586
        • Troskie R.L.
        • Jafrani Y.
        • Mercer T.R.
        • et al.
        Long-read cDNA sequencing identifies functional pseudogenes in the human transcriptome.
        Genome Biol. 2021; 22: 146https://doi.org/10.1186/s13059-021-02369-0
        • Benson G.
        Tandem repeats finder: A program to analyze DNA sequences.
        Nucleic Acids Res. 1999; 27https://doi.org/10.1093/nar/27.2.573
        • Tang H.
        • Kirkness E.F.
        • Lippert C.
        • et al.
        Profiling of Short-Tandem-Repeat Disease Alleles in 12,632 Human Whole Genomes.
        Am J Hum Genet. 2017; 101https://doi.org/10.1016/j.ajhg.2017.09.013
        • Treangen T.J.
        • Salzberg S.L.
        Repetitive DNA and next-generation sequencing: computational challenges and solutions.
        Nat Rev Genet. 2012; 13: 36-46
        • Lee H.
        • Gurtowski J.
        • Yoo S.
        • et al.
        Third-generation sequencing and the future of genomics.
        bioRxiv. 2016;
        • Ardui S.
        • Race V.
        • Ravel T de
        • et al.
        Detecting AGG interruptions in females with a FMR1 premutation by long-read single-molecule sequencing: A 1 year clinical experience.
        Front Genet. 2018; 9https://doi.org/10.3389/fgene.2018.00150
        • Cumming S.A.
        • Hamilton M.J.
        • Robb Y.
        • et al.
        De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1.
        Eur J Hum Genet. 2018; 26https://doi.org/10.1038/s41431-018-0156-9
        • Höijer I.
        • Tsai Y.C.
        • Clark T.A.
        • et al.
        Detailed analysis of HTT repeat elements in human blood using targeted amplification-free long-read sequencing.
        Hum Mutat. 2018; 39: 1262-1272https://doi.org/10.1002/humu.23580
        • McFarland K.N.
        • Liu J.
        • Landrian I.
        • et al.
        Paradoxical effects of repeat interruptions on spinocerebellar ataxia type 10 expansions and repeat instability.
        Eur J Hum Genet. 2013; 21https://doi.org/10.1038/ejhg.2013.32
        • Brook J.D.
        • McCurrach M.E.
        • Harley H.G.
        • et al.
        Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member.
        Cell. 1992; 68https://doi.org/10.1016/0092-8674(92)90154-5
        • Ropers H.H.
        Genetics of intellectual disability.
        Curr Opin Genet Dev. 2008; 18https://doi.org/10.1016/j.gde.2008.07.008
        • Su Y.
        • Fan L.
        • Shi C.
        • et al.
        Deciphering Neurodegenerative Diseases Using Long-Read Sequencing.
        Neurology. 2021; 97https://doi.org/10.1212/WNL.0000000000012466
        • Vissers L.E.L.M.
        • de Ligt J.
        • Gilissen C.
        • et al.
        A de novo paradigm for mental retardation.
        Nat Genet. 2010; 42https://doi.org/10.1038/ng.712
        • Niemi M.E.K.
        • Martin H.C.
        • Rice D.L.
        • et al.
        Common genetic variants contribute to risk of rare severe neurodevelopmental disorders.
        Nature. 2018; 562https://doi.org/10.1038/s41586-018-0566-4
        • Mahmoud M.
        • Gobet N.
        • Cruz-Dávalos D.I.
        • et al.
        Structural variant calling: The long and the short of it.
        Genome Biol. 2019; 20https://doi.org/10.1186/s13059-019-1828-7
        • Hiatt S.M.
        • Lawlor J.M.J.
        • Handley L.H.
        • et al.
        Long-read genome sequencing for the molecular diagnosis of neurodevelopmental disorders.
        Hum Genet Genomics Adv. 2021; 2https://doi.org/10.1016/j.xhgg.2021.100023
        • Braat S.
        • Kooy R.F.
        The GABAA Receptor as a Therapeutic Target for Neurodevelopmental Disorders.
        Neuron. 2015; 86: 1119-1130
        • Huber K.M.
        • Klann E.
        • Costa-Mattioli M.
        • et al.
        Dysregulation of Mammalian Target of Rapamycin Signaling in Mouse Models of Autism.
        J Neurosci. 2015; 35: 13836-13842
        • Banerjee A.
        • Ifrim M.F.
        • Valdez A.N.
        • et al.
        Aberrant RNA translation in fragile X syndrome: From FMRP mechanisms to emerging therapeutic strategies.
        Brain Res. 2018; 1693: 24-36
        • Sathyanarayana S.H.
        • Saunders J.A.
        • Slaughter J.
        • et al.
        Pten heterozygosity restores neuronal morphology in fragile X syndrome mice.
        Proc Natl Acad Sci U S A. 2022; 119 (e2109448119)
        • Darnell J.C.
        • van Driesche S.J.
        • Zhang C.
        • et al.
        FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism.
        Cell. 2011; 146: 247-261
        • Bagni C.
        • Tassone F.
        • Neri G.
        • et al.
        Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics.
        J Clin Invest. 2012; 122: 4314-4322
        • Nelson D.L.
        • Orr H.T.
        • Warren S.T.
        The Unstable Repeats—Three Evolving Faces of Neurological Disease.
        Neuron. 2013; 77: 825-843
        • Berry-Kravis E.M.
        • Lindemann L.
        • Jønch A.E.
        • et al.
        Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome.
        Nat Rev Drug Discov. 2018; 17: 280-299
        • Yrigollen C.M.
        • Durbin-Johnson B.
        • Gane L.
        • et al.
        AGG interruptions within the maternal FMR1 gene reduce the risk of offspring with fragile X syndrome.
        Genet Med. 2012; 14https://doi.org/10.1038/gim.2012.34
        • Apessos A.
        • Abou-Sleiman P.M.
        • Harper J.C.
        • et al.
        Preimplantation genetic diagnosis of the fragile X syndrome by use of linked polymorphic markers.
        Prenatal Diagn. 2001; 21https://doi.org/10.1002/pd.111
        • Biancalana V.
        • Glaeser D.
        • McQuaid S.
        • et al.
        EMQN best practice guidelines for the molecular genetic testing and reporting of fragile X syndrome and other fragile X-associated disorders.
        Eur J Hum Genet. 2015; 23https://doi.org/10.1038/ejhg.2014.185
        • Zoghbi H.Y.
        • Orr H.T.
        Glutamine repeats and neurodegeneration.
        Annu Rev Neurosci. 2000; 23https://doi.org/10.1146/annurev.neuro.23.1.217
        • Maciel P.
        • Gaspar C.
        • DeStefano A.L.
        • et al.
        Correlation between CAG repeat length and clinical features in Machado- Joseph disease.
        Am J Hum Genet. 1995; 57
        • Matsuura T.
        • Fang P.
        • Pearson C.E.
        • et al.
        Interruptions in the expanded ATTCT repeat of spinocerebellar ataxia type 10: Repeat purity as a disease modifier?.
        Am J Hum Genet. 2006; 78https://doi.org/10.1086/498654
        • Matsuura T.
        • Yamagata T.
        • Burgess D.L.
        • et al.
        Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10.
        Nat Genet. 2000; 26https://doi.org/10.1038/79911
        • Schüle B.
        • McFarland K.N.
        • Lee K.
        • et al.
        Parkinson’s disease associated with pure ATXN10 repeat expansion.
        npj Parkinson’s Dis. 2017; 3https://doi.org/10.1038/s41531-017-0029-x
        • Wagner L.A.
        • Menalled L.
        • Goumeniouk A.D.
        • et al.
        Huntington Disease.
        in: McArthur R.A. Borsini F. Animal and Translational models for CNS drug discovery. Acedamic Press, 2008: 207-266https://doi.org/10.1016/B978-0-12-373861-5.00018-7
        • Huntington T.
        • Macdonald M.E.
        • Ambrose C.M.
        • et al.
        A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group.
        Cell. 1993; 72https://doi.org/10.1016/0092-8674(93)90585-E
        • Losekoot M.
        • van Belzen M.J.
        • Seneca S.
        • et al.
        EMQN/CMGS best practice guidelines for the molecular genetic testing of huntington disease.
        Eur J Hum Genet. 2013; 21https://doi.org/10.1038/ejhg.2012.200
        • Perfect J.R.
        Fungal diagnosis: how do we do it and can we do better?.
        Curr Med Res Opin. 2013; 29: 3-11
        • Ho C.K.Y.
        • Raghwani J.
        • Koekkoek S.
        • et al.
        Characterization of Hepatitis C Virus (HCV) Envelope Diversification from Acute to Chronic Infection within a Sexually Transmitted HCV Cluster by Using Single-Molecule, Real-Time Sequencing.
        J Virol. 2017; 91https://doi.org/10.1128/jvi.02262-16
        • Li Y.
        • zhou H.X.
        • hui Li M.
        • et al.
        Comparison of third-generation sequencing approaches to identify viral pathogens under public health emergency conditions.
        Virus Genes. 2020; 56https://doi.org/10.1007/s11262-020-01746-4
        • Ko S.H.
        • Mokhtari E.B.
        • Mudvari P.
        • et al.
        High-throughput, single-copy sequencing reveals SARS-CoV-2 spike variants coincident with mounting humoral immunity during acute COVID-19.
        PLoS Pathog. 2021; 17https://doi.org/10.1371/journal.ppat.1009431
        • Leggett R.M.
        • Alcon-Giner C.
        • Heavens D.
        • et al.
        Rapid MinION profiling of preterm microbiota and antimicrobial-resistant pathogens.
        Nat Microbiol. 2020; 5: 430-442
        • Quick J.
        • Loman N.J.
        • Duraffour S.
        • et al.
        Real-time, portable genome sequencing for Ebola surveillance.
        Nature. 2016; 530: 228-232
        • Yang L.
        • Haidar G.
        • Zia H.
        • et al.
        Metagenomic identification of severe pneumonia pathogens in mechanically-ventilated patients: a feasibility and clinical validity study.
        Respir Res. 2019; 20: 265
        • Charalampous T.
        • Kay G.L.
        • Richardson H.
        • et al.
        Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection.
        Nat Biotechnol. 2019; 37: 783-792
        • Moon J.
        • Jang Y.
        • Kim N.
        • et al.
        Diagnosis of Haemophilus influenzae Pneumonia by Nanopore 16S Amplicon Sequencing of Sputum.
        Emerg Infect Dis. 2018; 24: 1944-1946
        • Wang K.
        • Li P.
        • Lin Y.
        • et al.
        Metagenomic Diagnosis for a Culture-Negative Sample From a Patient With Severe Pneumonia by Nanopore and Next-Generation Sequencing.
        Front Cell Infect Microbiol. 2020; 10https://doi.org/10.3389/fcimb.2020.00182
        • Hoenen T.
        • Groseth A.
        • Rosenke K.
        • et al.
        Nanopore sequencing as a rapidly deployable Ebola outbreak tool.
        Emerg Infect Dis. 2016; 22https://doi.org/10.3201/eid2202.151796
        • Dudas G.
        • Carvalho L.M.
        • Bedford T.
        • et al.
        Virus genomes reveal factors that spread and sustained the Ebola epidemic.
        Nature. 2017; 544https://doi.org/10.1038/nature22040
        • Faria N.R.
        • Quick J.
        • Claro I.M.
        • et al.
        Establishment and cryptic transmission of Zika virus in Brazil and the Americas.
        Nature. 2017; 546https://doi.org/10.1038/nature22401
        • Faria N.R.
        • Kraemer M.U.G.
        • Hill S.C.
        • et al.
        Genomic and epidemiological monitoring of yellow fever virus transmission potential.
        Science (1979). 2018; : 361https://doi.org/10.1126/science.aat7115
        • Kafetzopoulou L.E.
        • Efthymiadis K.
        • Lewandowski K.
        • et al.
        Assessment of metagenomic Nanopore and Illumina sequencing for recovering whole genome sequences of chikungunya and dengue viruses directly from clinical samples.
        Eurosurveillance. 2018; 23https://doi.org/10.2807/1560-7917.ES.2018.23.50.1800228
        • Greninger A.L.
        • Naccache S.N.
        • Federman S.
        • et al.
        Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis.
        Genome Med. 2015; 7https://doi.org/10.1186/s13073-015-0220-9
        • Lewandowski K.
        • Xu Y.
        • Pullan S.T.
        • et al.
        Metagenomic nanopore sequencing of influenza virus direct from clinical respiratory samples.
        J Clin Microbiol. 2020; 58https://doi.org/10.1128/JCM.00963-19
        • Xu Y.
        • Lewandowski K.
        • Jeffery K.
        • et al.
        Nanopore metagenomic sequencing to investigate nosocomial transmission of human metapneumovirus from a unique genetic group among haematology patients in the United Kingdom.
        J Infect. 2020; 80https://doi.org/10.1016/j.jinf.2020.02.003
        • Meredith L.W.
        • Hamilton W.L.
        • Warne B.
        • et al.
        Rapid implementation of SARS-CoV-2 sequencing to investigate cases of health-care associated COVID-19: a prospective genomic surveillance study.
        Lancet Infect Dis. 2020; 20https://doi.org/10.1016/S1473-3099(20)30562-4
        • Washington N.L.
        • Gangavarapu K.
        • Zeller M.
        • et al.
        Genomic epidemiology identifies emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States.
        medRxiv. 2021; https://doi.org/10.1101/2021.02.06.21251159
        • Wang J.
        MinION nanopore sequencing of an influenza genome.
        Front Microbiol. 2015; 6https://doi.org/10.3389/fmicb.2015.00766
        • Stark R.
        • Grzelak M.
        • Hadfield J.
        RNA sequencing: the teenage years.
        Nat Rev Genet. 2019; 20: 631-656
        • Earl J.P.
        • Adappa N.D.
        • Krol J.
        • et al.
        Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes 06 Biological Sciences 0604 Genetics 06 Biological Sciences 0605 Microbiology.
        Microbiome. 2018; 6https://doi.org/10.1186/s40168-018-0569-2
        • Bialasiewicz S.
        • Duarte T.P.S.
        • Nguyen S.H.
        • et al.
        Rapid diagnosis of Capnocytophaga canimorsus septic shock in an immunocompetent individual using real-time Nanopore sequencing: a case report.
        BMC Infect Dis. 2019; 19https://doi.org/10.1186/s12879-019-4173-2
        • Schmidt K.
        • Mwaigwisya S.
        • Crossman L.C.
        • et al.
        Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing.
        J Antimicrob Chemother. 2017; 72https://doi.org/10.1093/jac/dkw397
        • Gargis A.S.
        • Cherney B.
        • Conley A.B.
        • et al.
        Rapid Detection of Genetic Engineering, Structural Variation, and Antimicrobial Resistance Markers in Bacterial Biothreat Pathogens by Nanopore Sequencing.
        Scientific Rep. 2019; 9https://doi.org/10.1038/s41598-019-49700-1
        • Greig D.R.
        • Jenkins C.
        • Gharbia S.
        • et al.
        Comparison of single-nucleotide variants identified by Illumina and Oxford Nanopore technologies in the context of a potential outbreak of Shiga toxin-producing Escherichia coli.
        Gigascience. 2019; 8https://doi.org/10.1093/gigascience/giz104
        • Sakai J.
        • Tarumoto N.
        • Kodana M.
        • et al.
        An identification protocol for ESBL-producing gramnegative bacteria bloodstream infections using a MinION nanopore sequencer.
        J Med Microbiol. 2019; 68https://doi.org/10.1099/jmm.0.001024
        • Taxt A.M.
        • Avershina E.
        • Frye S.A.
        • et al.
        Rapid identification of pathogens, antibiotic resistance genes and plasmids in blood cultures by nanopore sequencing.
        Scientific Rep. 2020; 10https://doi.org/10.1038/s41598-020-64616-x
        • Gu W.
        • Deng X.
        • Lee M.
        • et al.
        Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids.
        Nat Med. 2021; 27https://doi.org/10.1038/s41591-020-1105-z
        • Cuomo C.A.
        • Shea T.
        • Yang B.
        • et al.
        Whole genome sequence of the heterozygous clinical isolate Candida krusei 81-B-5.
        G3: Genes, Genomes, Genet. 2017; 7https://doi.org/10.1534/g3.117.043547
        • Luo R.
        • Zimin A.
        • Workman R.
        • et al.
        First draft genome sequence of the pathogenic fungus Lomentospora prolificans (formerly Scedosporium prolificans).
        G3: Genes, Genomes, Genet. 2017; 7https://doi.org/10.1534/g3.117.300107
        • Vale-Silva L.
        • Beaudoing E.
        • Tran V.D.T.
        • et al.
        Comparative genomics of two sequential Candida glabrata clinical isolates.
        G3: Genes, Genomes, Genet. 2017; 7https://doi.org/10.1534/g3.117.042887
        • Panthee S.
        • Hamamoto H.
        • Ishijima S.A.
        • et al.
        Utilization of hybrid assembly approach to determine the genome of an opportunistic pathogenic fungus, candida albicans timm1768.
        Genome Biol Evol. 2018; 10https://doi.org/10.1093/gbe/evy166
        • Rhodes J.
        • Abdolrasouli A.
        • Farrer R.A.
        • et al.
        Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris article.
        Emerg Microbes Infect. 2018; 7https://doi.org/10.1038/s41426-018-0045-x
        • Morand S.C.
        • Bertignac M.
        • Iltis A.
        • et al.
        Complete Genome Sequence of Malassezia restricta CBS 7877, an Opportunist Pathogen Involved in Dandruff and Seborrheic Dermatitis.
        Microbiol Resource Announcements. 2019; 8https://doi.org/10.1128/mra.01543-18
        • Schultzhaus Z.
        • Cuomo C.A.
        • Wang Z.
        Genome Sequence of the Black Yeast Exophiala lecanii-corni.
        Microbiol Resource Announcements. 2019; 8https://doi.org/10.1128/mra.01709-18
        • Pchelin I.M.
        • Azarov D.v.
        • Churina M.A.
        • et al.
        Whole genome sequence of first Candida auris strain, isolated in Russia.
        Med Mycol. 2020; 58https://doi.org/10.1093/mmy/myz078
        • Motooka D.
        • Fujimoto K.
        • Tanaka R.
        • et al.
        Fungal ITS1 deep-sequencing strategies to reconstruct the composition of a 26-species community and evaluation of the gut mycobiota of healthy Japanese individuals.
        Front Microbiol. 2017; 8https://doi.org/10.3389/fmicb.2017.00238
        • Irinyi L.
        • Hu Y.
        • Hoang M.T.V.
        • et al.
        Long-read sequencing based clinical metagenomics for the detection and confirmation of Pneumocystis jirovecii directly from clinical specimens: A paradigm shift in mycological diagnostics.
        Med Mycol. 2019; 58https://doi.org/10.1093/mmy/myz109
        • Sakamoto Y.
        • Sereewattanawoot S.
        • Suzuki A.
        A new era of long-read sequencing for cancer genomics.
        J Hum Genet. 2020; 65https://doi.org/10.1038/s10038-019-0658-5
        • Feehan J.M.
        • Scheibel K.E.
        • Bourras S.
        • et al.
        Purification of high molecular weight genomic DNA from powdery mildew for long-read sequencing.
        J Visualized Experiments. 2017; 2017https://doi.org/10.3791/55463
        • Schwessinger B.
        • Rathjen J.P.
        Extraction of high molecular weight DNA from fungal rust spores for long read sequencing.
        Methods Mol Biol. 2017; 1659https://doi.org/10.1007/978-1-4939-7249-4_5
        • Inglis P.W.
        • Marilia de Castro R.P.
        • Resende L.v.
        • et al.
        Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and fungal samples for high-throughput SNP genotyping and sequencing applications.
        PLoS One. 2018; 13https://doi.org/10.1371/journal.pone.0206085
        • Marotz C.A.
        • Sanders J.G.
        • Zuniga C.
        • et al.
        Improving saliva shotgun metagenomics by chemical host DNA depletion.
        Microbiome. 2018; 6https://doi.org/10.1186/s40168-018-0426-3
        • Helmersen K.
        • Aamot H.V.
        DNA extraction of microbial DNA directly from infected tissue: an optimized protocol for use in nanopore sequencing.
        Sci Rep. 2020; 10https://doi.org/10.1038/s41598-020-59957-6
        • Heravi F.S.
        • Zakrzewski M.
        • Vickery K.
        • et al.
        Host DNA depletion efficiency of microbiome DNA enrichment methods in infected tissue samples.
        J Microbiol Methods. 2020; 170https://doi.org/10.1016/j.mimet.2020.105856
        • Kovaka S.
        • Fan Y.
        • Ni B.
        • et al.
        Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED.
        Nat Biotechnol. 2021; 39https://doi.org/10.1038/s41587-020-0731-9
        • Payne A.
        • Holmes N.
        • Clarke T.
        • et al.
        Readfish enables targeted nanopore sequencing of gigabase-sized genomes.
        Nat Biotechnol. 2021; 39https://doi.org/10.1038/s41587-020-00746-x
        • David M.
        • Dursi L.J.
        • Yao D.
        • et al.
        Nanocall: an open source basecaller for Oxford Nanopore sequencing data.
        Bioinformatics. 2017; 33: 49-55
        • Boža V.
        • Brejová B.
        • Vinař T.
        DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads.
        PLoS One. 2017; 12: e0178751
        • Teng H.
        • Cao M.D.
        • Hall M.B.
        • et al.
        Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning.
        Gigascience. 2018; 7https://doi.org/10.1093/gigascience/giy037
        • Koren S.
        • Walenz B.P.
        • Berlin K.
        • et al.
        Canu: scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation.
        Genome Res. 2017; 27: 722-736
        • Ruan J.
        • Li H.
        Fast and accurate long-read assembly with wtdbg2.
        Nat Methods. 2020; 17: 155-158
        • Walker B.J.
        • Abeel T.
        • Shea T.
        • et al.
        Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement.
        PLoS One. 2014; 9: e112963
        • Loman N.J.
        • Quick J.
        • Simpson J.T.
        A complete bacterial genome assembled de novo using only nanopore sequencing data.
        Nat Methods. 2015; 12: 733-735
        • Kiełbasa S.M.
        • Wan R.
        • Sato K.
        • et al.
        Adaptive seeds tame genomic sequence comparison.
        Genome Res. 2011; 21: 487-493
        • Sović I.
        • Šikić M.
        • Wilm A.
        • et al.
        Fast and sensitive mapping of nanopore sequencing reads with GraphMap.
        Nat Commun. 2016; 7: 11307
        • Jansen H.J.
        • Liem M.
        • Jong-Raadsen S.A.
        • et al.
        Rapid de novo assembly of the European eel genome from nanopore sequencing reads.
        Scientific Rep. 2017; 7https://doi.org/10.1038/s41598-017-07650-6
        • Shafin K.
        • Pesout T.
        • Lorig-Roach R.
        • et al.
        Efficient de novo assembly of eleven human genomes using PromethION sequencing and a novel nanopore toolkit.
        bioRxiv. 2019; https://doi.org/10.1101/715722
        • Chin C.S.
        • Khalak A.
        Human Genome Assembly in 100 Minutes.
        bioRxiv. 2019;
        • Kolmogorov M.
        • Yuan J.
        • Lin Y.
        • et al.
        Assembly of long, error-prone reads using repeat graphs.
        Nat Biotechnol. 2019; 37https://doi.org/10.1038/s41587-019-0072-8
      2. Vaser R, Sikic M. Yet another de novo genome assembler. In: International Symposium on Image and Signal Processing and Analysis, ISPA. Vol 2019-September 23-25th, 2019; Dubrovnik, Croatia. doi:10.1109/ISPA.2019.8868909.

        • Li H.
        Minimap2: pairwise alignment for nucleotide sequences.
        Bioinformatics. 2018; 34: 3094-3100
        • Simpson J.T.
        • Workman R.E.
        • Zuzarte P.C.
        • et al.
        Detecting DNA cytosine methylation using nanopore sequencing.
        Nat Methods. 2017; 14https://doi.org/10.1038/nmeth.4184
        • Carson S.
        • Wanunu M.
        Challenges in DNA motion control and sequence readout using nanopore devices.
        Nanotechnology. 2015; 26: 074004
        • Fuller C.W.
        • Kumar S.
        • Porel M.
        • et al.
        Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array.
        Proc Natl Acad Sci. 2016; 113: 5233-5238
        • Pugliese K.M.
        • Gul O.T.
        • Choi Y.
        • et al.
        Processive Incorporation of Deoxynucleoside Triphosphate Analogs by Single-Molecule DNA Polymerase I (Klenow Fragment) Nanocircuits.
        J Am Chem Soc. 2015; 137: 9587-9594
        • Sanders A.D.
        • Falconer E.
        • Hills M.
        • et al.
        Single-cell template strand sequencing by Strand-seq enables the characterization of individual homologs.
        Nat Protoc. 2017; 12: 1151-1176
        • Ghareghani M.
        • Porubskỳ D.
        • Sanders A.D.
        • et al.
        Strand-seq enables reliable separation of long reads by chromosome via expectation maximization.
        Bioinformatics. 2018; 34: i115-i123
        • Lam E.T.
        • Hastie A.
        • Lin C.
        • et al.
        Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly.
        Nat Biotechnol. 2012; 30: 771-776
        • Cummings B.B.
        • Marshall J.L.
        • Tukiainen T.
        • Lek M.
        • Donkervoort S.
        • Foley A.R.
        • et al.
        Improving genetic diagnosis in Mendelian disease with transcriptome sequencing.
        Sci. Transl. Med. 2017; 9: eaal5209https://doi.org/10.1126/scitranslmed.aal5209
        • Cretu Stancu M.
        • van Roosmalen M.J.
        • Renkens I.
        • Nieboer M.M.
        • Middelkamp S.
        • de Ligt J.
        • et al.
        Mapping and phasing of structural variation in patient genomes using nanopore sequencing.
        Nat. Commun. 2017; 8: 1326https://doi.org/10.1038/s41467-017-01343-4