Advertisement

Advances in Cell-Free DNA

Published:September 28, 2022DOI:https://doi.org/10.1016/j.yamp.2022.08.002

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Molecular Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mandel P.
        • Metais P.
        Les acides nucléiques du plasma sanguin chez l'homme [Nuclear Acids In Human Blood Plasma].
        C R Seances Soc Biol Fil. 1948; 142 (PMID: 18875018): 241-243
        • Tan E.M.
        • Schur P.H.
        • Carr R.I.
        • et al.
        Deoxyribonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus.
        J Clin Invest. 1966; 45 (PMID: 4959277): 1732-1740
        • Leon S.A.
        • Shapiro B.
        • Sklaroff D.M.
        • et al.
        Free DNA in the serum of cancer patients and the effect of therapy.
        Cancer Res. 1977; 37 (PMID: 837366): 646-650
        • Lo Y.M.
        • Corbetta N.
        • Chamberlain P.F.
        • et al.
        Presence of fetal DNA in maternal plasma and serum.
        Lancet. 1997; 350: 485-487
        • Fiorentino F.
        • Bono S.
        • Pizzuti F.
        • et al.
        The importance of determining the limit of detection of non-invasive prenatal testing methods.
        Prenat Diagn. 2016; 36 (Epub 2016 Feb 21. PMID: 26815144): 304-311
        • Mouliere F.
        • Chandrananda D.
        • Piskorz A.M.
        • et al.
        Enhanced detection of circulating tumor DNA by fragment size analysis.
        Sci Transl Med. 2018; 10 (PMID: 30404863): eaat4921
        • Bettegowda C.
        • Sausen M.
        • Leary R.J.
        • et al.
        Detection of circulating tumor DNA in early- and late-stage human malignancies.
        Sci Transl Med. 2014; 6 (PMID: 24553385): 224ra24
        • Gerber T.
        • Taschner-Mandl S.
        • Saloberger-Sindhöringer L.
        • et al.
        Assessment of pre-analytical sample handling conditions for comprehensive liquid biopsy analysis.
        J Mol Diagn. 2020; 22 (Epub 2020 Jun 1. PMID: 32497717): 1070-1086
        • Johansson G.
        • Andersson D.
        • Filges S.
        • et al.
        Considerations and quality controls when analyzing cell-free tumor DNA.
        Biomol Detect Quantif. 2019; 17 (PMID: 30906693): 100078
        • Markus H.
        • Contente-Cuomo T.
        • Farooq M.
        • et al.
        Evaluation of pre-analytical factors affecting plasma DNA analysis.
        Sci Rep. 2018; 8: 7375
        • Nikolaev S.
        • Lemmens L.
        • Koessler T.
        • et al.
        Circulating tumoral DNA: preanalytical validation and quality control in a diagnostic laboratory. Circulating tumoral DNA: Preanalytical validation and quality control in a diagnostic laboratory.
        Anal Biochem. 2018; 542 (Epub 2017 Nov 11. PMID: 29137972): 34-39
        • Merker J.D.
        • Oxnard G.R.
        • Compton C.
        • et al.
        Circulating Tumor DNA Analysis in Patients With Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review.
        J Clin Oncol. 2018; 36 (Epub 2018 Mar 5. PMID: 29504847): 1631-1641
        • Razavi P.
        • Li B.T.
        • Brown D.N.
        • et al.
        High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants.
        Nat Med. 2019; 25 (PMID: 31768066): 1928-1937
        • Leonetti A.
        • Sharma S.
        • Minari R.
        • et al.
        Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer.
        Br J Cancer. 2019; 121 (Epub 2019 Sep 30. PMID: 31564718): 725-737
        • Adalsteinsson V.A.
        • Ha G.
        • Freeman S.S.
        • et al.
        Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors.
        Nat Commun. 2017; 8 (PMID: 29109393): 1324
        • Lennon A.M.
        • Buchanan A.H.
        • Kinde I.
        • et al.
        Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention.
        Science. 2020; 369 (Epub 2020 Apr 28. PMID: 32345712): eabb9601
        • Ellinger J.
        • El Kassem N.
        • Heukamp L.C.
        • et al.
        Hypermethylation of cell-free serum DNA indicates worse outcome in patients with bladder cancer.
        J Urol. 2008; 179 (PMID: 18006010): 346-352
        • Khetrapal P.
        • Lee M.W.L.
        • Tan W.S.
        • et al.
        The role of circulating tumour cells and nucleic acids in blood for the detection of bladder cancer: A systematic review.
        Cancer Treat Rev. 2018; 66 (Epub 2018 Apr 17. PMID: 29684744): 56-63
        • National Comprehensive Cancer Network
        Bladder Cancer (Version 1.2022).
        • Agarwal N.
        • Pal S.K.
        • Hahn A.W.
        • et al.
        Characterization of metastatic urothelial carcinoma via comprehensive genomic profiling of circulating tumor DNA.
        Cancer. 2018; 124 (Epub 2018 Mar 8. PMID: 29517810): 2115-2124
        • Mouliere F.
        • Mair R.
        • Chandrananda D.
        • et al.
        Detection of cell-free DNA fragmentation and copy number alterations in cerebrospinal fluid from glioma patients.
        EMBO Mol Med. 2018; 10: e9323
        • Miller A.M.
        • Shah R.H.
        • Pentsova E.I.
        • et al.
        Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid.
        Nature. 2019; 565 (Epub 2019 Jan 23. PMID: 30675060): 654-658
        • Pentsova E.I.
        • Shah R.H.
        • Tang J.
        • et al.
        Evaluating cancer of the central nervous system through next-generation sequencing of cerebrospinal fluid.
        J Clin Oncol. 2016; 34 (PMID: 27161972): 2404-2415
        • Wang Y.
        • Springer S.
        • Zhang M.
        • et al.
        Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord.
        Proc Natl Acad Sci. 2015; 112 (Epub 2015 Jul 20. PMID: 26195750): 9704-9709
        • National Comprehensive Cancer Network
        Breast Cancer (Version 2.2022).
        • National Comprehensive Cancer Network
        Colon Cancer (Version 1.2022).
        • Tie J.
        • Cohen J.D.
        • Wang Y.
        • et al.
        Circulating Tumor DNA Analyses as Markers of Recurrence Risk and Benefit of Adjuvant Therapy for Stage III Colon Cancer.
        JAMA Oncol. 2019; 5: 1710-1717
        • Reinert T.
        • Henriksen T.V.
        • Christensen E.
        • et al.
        Analysis of Plasma Cell-Free DNA by Ultradeep Sequencing in Patients With Stages I to III Colorectal Cancer.
        JAMA Oncol. 2019; 5: 1124-1131
        • Henriksen T.V.
        • Tarazona N.
        • Frydendahl A.
        • et al.
        Circulating Tumor DNA in Stage III Colorectal Cancer, beyond Minimal Residual Disease Detection, toward Assessment of Adjuvant Therapy Efficacy and Clinical Behavior of Recurrences.
        Clin Cancer Res. 2022; 28 (Epub 2021 Oct 8. PMID: 34625408): 507-517
        • Dasari A.
        • Morris V.K.
        • Allegra C.J.
        • et al.
        ctDNA applications and integration in colorectal cancer: an NCI Colon and Rectal-Anal Task Forces whitepaper.
        Nat Rev Clin Oncol. 2020; 17 (Epub 2020 Jul 6. PMID: 32632268): 757-770
        • Vymetalkova V.
        • Cervena K.
        • Bartu L.
        • et al.
        Circulating Cell-Free DNA and Colorectal Cancer: A Systematic Review.
        Int J Mol Sci. 2018; 19: 3356
        • Bent A.
        • Raghavan S.
        • Dasari A.
        • et al.
        The Future of ctDNA-Defined Minimal Residual Disease: Personalizing Adjuvant Therapy in Colorectal Cancer.
        Clin Colorectal Cancer. 2022; 21 (Online ahead of print. PMID: 35450837): 89-95
      1. Epi proColon.
        • Serrano C.
        • Vivancos A.
        • López-Pousa A.
        • et al.
        Clinical value of next generation sequencing of plasma cell-free DNA in gastrointestinal stromal tumors.
        BMC Cancer. 2020; 20 (PMID: 32024476): 99
        • Namløs H.M.
        • Boye K.
        • Mishkin S.J.
        • et al.
        Non-invasive Detection of ctDNA Reveals Intratumor Heterogeneity and Is Associated with Tumor Burden in Gastrointestinal Stromal Tumor.
        Mol Cancer Ther. 2018; 17 (Epub 2018 Aug 10. PMID: 30097488): 2473-2480
        • Ravegnini G.
        • Sammarini G.
        • Serrano C.
        • et al.
        Clinical relevance of circulating molecules in cancer: focus on gastrointestinal stromal tumors.
        Ther Adv Med Oncol. 2019; 11 (1758835919831902)
        • Cohen J.D.
        • Li L.
        • Wang Y.
        • et al.
        Detection and localization of surgically resectable cancers with a multianalyte blood test.
        Science. 2018; 359 (Epub 2018 Jan 18. PMID: 29348365): 926-930
        • Krug A.K.
        • Enderle D.
        • Karlovich C.
        • et al.
        Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma.
        Ann Oncol. 2018; 29: 2143
        • Castellanos-Rizaldos E.
        • Grimm D.G.
        • Tadiglota V.
        • et al.
        Exosomes-based detection of EGFR T790M in plasma from non-small cell lung cancer patients.
        Clin Cancer Res. 2018; 24 (Epub 2018 Mar 13. PMID: 29535126): 2944-2950
        • Barsan V.
        • Xia Y.
        • Klein D.
        • et al.
        Simultaneous monitoring of disease and microbe dynamics through plasma DNA sequencing in pediatric patients with acute lymphoblastic leukemia.
        Sci Adv. 2022; 8 (Epub 2022 Apr 20. PMID: 35442732): eabj1360